




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
上海市南汇中学2025届高一上数学期末教学质量检测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知函数为奇函数,则()A.-1 B.0C.1 D.22.函数是A.周期为的奇函数 B.周期为的奇函数C.周期为的偶函数 D.周期为的偶函数3.设函数,且在上单调递增,则的大小关系为A B.C. D.不能确定4.某四棱锥的三视图如图所示,则该四棱锥的最长的棱长度为()A. B.C. D.5.已知角的终边经过点,则().A. B.C. D.6.设函数,若关于的方程有四个不同的解,且,则的取值范围是()A. B.C. D.7.已知函数,下列区间中包含零点的区间是()A. B.C. D.8.函数的定义城为()A B.C. D.9.当时,在同一坐标系中,函数与的图象是()A. B.C. D.10.三棱柱中,侧棱垂直于底面,底面三角形是正三角形,是的中点,则下列叙述正确的是①与是异面直线;②与异面直线,且③面④A.② B.①③C.①④ D.②④二、填空题:本大题共6小题,每小题5分,共30分。11.若函数在[-1,2]上的最大值为4,最小值为m,且函数在上是增函数,则a=______.12.若f(x)是定义在R上的偶函数,当x≥0时,f(x)=,若方程f(x)=kx恰有3个不同的根,则实数k的取值范围是______13.若幂函数的图象过点,则___________.14.在半径为5的圆中,的圆心角所对的扇形的面积为_______.15.已知幂函数的图像过点,则的解析式为=__________16.已知是第四象限角,,则______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.某快递公司在某市的货物转运中心,拟引进智能机器人分拣系统,以提高分拣效率和降低物流成本,已知购买x台机器人的总成本万元.(1)若使每台机器人的平均成本最低,问应买多少台?(2)现按(1)中的数量购买机器人,需要安排m人将邮件放在机器人上,机器人将邮件送达指定落袋格口完成分拣,经实验知,每台机器人的日平均分拣量(单位:件),已知传统人工分拣每人每日的平均分拣量为1200件,问引进机器人后,日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少多少?18.已知定义在上的奇函数.(1)求实数的值;(2)解关于的不等式19.设函数,其中,且.(1)求的定义域;(2)当时,函数图象上是否存在不同两点,使过这两点的直线平行于轴,并证明.20.已知函数的最小正周期为.(1)求函数的单调递增区间;(2)将函数的图象向左平移个单位,再向上平移个单位,得到函数的图象.若在上至少有个零点,求的最小值.21.已知函数.(1)求的最小正周期和最大值;(2)讨论在上的单调性.
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、C【解析】利用函数是奇函数得到,然后利用方程求解,,则答案可求【详解】解:函数为奇函数,当时,,所以,所以,,故故选:C.2、A【解析】对于函数y=sin,T=4π,且sin(-)=-sin.故选A3、B【解析】当时,,它在上单调递增,所以.又为偶函数,所以它在上单调递减,因,故,选B.点睛:题设中的函数为偶函数,故根据其在上为增函数判断出,从而得到另一侧的单调性和,故可以判断出.4、A【解析】先由三视图得出该几何体的直观图,结合题意求解即可.【详解】由三视图可知其直观图,该几何体为四棱锥P-ABCD,最长的棱为PA,则最长的棱长为,故选A【点睛】本题主要考查几何体的三视图,属于基础题型.5、A【解析】根据三角函数的概念,,可得结果.【详解】因为角终边经过点所以故选:A【点睛】本题主要考查角终边过一点正切值的计算,属基础题.6、D【解析】由题意,根据图象得到,,,,,推出.令,,而函数.即可求解.【详解】【点睛】方法点睛:已知函数零点个数(方程根的个数)求参数值(取值范围)常用的方法:(1)直接法:直接求解方程得到方程的根,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数的值域问题加以解决;(3)数形结合法:先对解析式变形,进而构造两个函数,然后在同一平面直角坐标系中画出函数的图象,利用数形结合的方法求解.7、C【解析】根据函数零点的存在性定理,求得,即可得到答案.【详解】由题意,函数,易得函数为单调递减函数,又由,所以,根据零点的存在定理,可得零点的区间是.故选:C.8、C【解析】由对数函数的性质以及根式的性质列不等式组,即可求解.【详解】由题意可得解得,所以原函数的定义域为,故选:C9、B【解析】根据时指数函数与对数函数均为定义域内的增函数即可得答案.【详解】解:因,函数为指数函数,为对数函数,故指数函数与对数函数均为定义域内的增函数,故选:B.10、A【解析】对于①,都在平面内,故错误;对于②,为在两个平行平面中且不平行的两条直线,底面三角形是正三角形,是中点,故与是异面直线,且,故正确;对于③,上底面是一个正三角形,不可能存在平面,故错误;对于④,所在的平面与平面相交,且与交线有公共点,故错误.故选A二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】当时,有,此时,此时为减函数,不合题意.若,则,故,检验知符合题意12、[-,-)∪(,]【解析】利用周期与对称性得出f(x)的函数图象,根据交点个数列出不等式得出k的范围【详解】∵当x>2时,f(x)=f(x-1),∴f(x)在(1,+∞)上是周期为1的函数,作出y=f(x)的函数图象如下:∵方程f(x)=kx恰有3个不同的根,∴y=f(x)与y=kx有三个交点,若k>0,则若k<0,由对称性可知.故答案为[-,-)∪(,].【点睛】本题考查了函数零点与函数图象的关系,函数周期与奇偶性的应用,方程根的问题常转化为函数图象的交点问题,属于中档题13、27【解析】代入已知点坐标求出幂函数解析式即可求,【详解】设代入,即,所以,所以.故答案为:27.14、【解析】先根据弧度的定义求得扇形的弧长,即可由扇形面积公式求得扇形的面积.【详解】设扇形的弧长为根据弧度定义可知则由扇形面积公式代入可得故答案为:【点睛】本题考查了弧度的定义,扇形面积的求法,属于基础题.15、##【解析】根据幂函数的定义设函数解析式,将点的坐标代入求解即可.【详解】由题意知,设幂函数的解析式为为常数),则,解得,所以.故答案为:16、【解析】利用同角三角函数的基本关系求出的值,在利用诱导公式可求得结果.【详解】因为是第四象限角,,则,所以,.故答案为:.三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)300台;(2)90人.【解析】(1)每台机器人的平均成本为,化简后利用基本不等式求最小值;(2)由(1)可知,引进300台机器人,并根据分段函数求300台机器人日分拣量的最大值,根据最大值求若人工分拣,所需人数,再与30作差求解.【详解】(1)由总成本,可得每台机器人的平均成本.因为.当且仅当,即时,等号成立.∴若使每台机器人的平均成本最低,则应买300台.(2)引进机器人后,每台机器人的日平均分拣量为:当时,300台机器人的日平均分拣量为∴当时,日平均分拣量有最大值144000.当时,日平均分拣量为∴300台机器人的日平均分拣量的最大值为144000件.若传统人工分拣144000件,则需要人数为(人).∴日平均分拣量达最大值时,用人数量比引进机器人前的用人数量最多可减少(人).【点睛】关键点点睛:本题的关键是理解题意,根据实际问题抽象出函数关系,并会求最值,本题最关键的一点时会求的最大值.18、(1)1;(2).【解析】(1)由奇函数的性质有,可求出的值,注意验证是否为奇函数.(2)根据函数的奇偶性、单调性可得,再结合对数函数的性质求解集.【小问1详解】因为是定义在上的奇函数,所以,解得,经检验是奇函数,即【小问2详解】由,得,又是定义在上的奇函数,所以,易知在上递增,所以,则,解得,所以原不等式的解集为19、(1)当时,定义域为;当时,定义域为.(2)不存在,证明见解析.【解析】(1)首先根据题意得到,再分类讨论解不等式即可.(2)首先根据单调性定义得到函数在为增函数,从而得到函数图像上不存在不同两点,使过这两点的直线平行于轴.【详解】(1)由题知:,①当时,即,则,定义域为.②当时,即,则,定义域为.综上,当时,定义域为;当时,定义域为.(2)因为,所以函数的定义域为,任取,且,因为,所以,因为,所以,所以,即,所以,函数在为增函数,所以函数图象上不存在不同两点,使过这两点的直线平行于轴.20、(1);(2).【解析】(1)利用正余弦的倍角公式,结合辅助角公式化简为标准正弦型三角函数,根据周期求得参数,再求其单调区间即可;(2)根据函数图像的平移求得的解析式,根据零点个数,即可求得参数的范围.【详解】(1)函数最小正周期为,则,则,所以,令,解得,则函数的单调递增区间为.(2)由题意:,令,得或.所以在每个周期上恰好有两个零点,若在上至少有个零点,应该大于等于第个零点的横坐标,则.【点睛】本题考查利用正余弦倍角公式和辅助角公式化简三角函数解析式,以及求三角函数的单调区间和零点个数,属综合中档题.21、
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 博物馆文物修复项目讲解员合作协议
- 跨境房产投资收益汇回操作流程合同
- 专用数据修复软件租赁与数据备份服务合同
- 影视制作虚拟场景合成软件授权与租赁合同
- 美团餐饮商家食品安全与环境卫生评估合同
- 五星级酒店物业公司安保人员高级全职聘用协议
- 夫妻移民资格忠诚度维护协议
- 国际自行车赛志愿者培训与执行服务补充协议
- 2025至2030年镀层板项目投资价值分析报告
- 薪资公司协议书范本
- 2025届广东省佛山市高三下学期教学质量检测(二)物理试题及答案
- 2025年初中数学联考试题及答案
- 河北省邯郸市2025年高考物理二模试卷(含解析)
- 《综合保税区发展战略》课件
- 2025年四川省成都市成华区中考二诊英语试题(原卷版+解析版)
- 2025第十三届贵州人才博览会遵义市事业单位人才引进47人笔试备考试题及答案解析
- 2025合肥市辅警考试试卷真题
- 《出师表》与《杜正献公》对比阅读训练
- 《我国中小企业薪酬激励机制研究-以郑州宇通客车公司为例》9700字
- 幕墙铝板合同协议
- 抽样计划考试试题及答案
评论
0/150
提交评论