




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精庖丁巧解牛知识·巧学一、离散型随机变量1.随机变量在一些试验中,试验可能出现的结果可以用一个变量X来表示,并且这个变量X是随着试验的结果的变化而变化的,我们把这种随着试验结果变化而变化的变量称为随机变量。随机变量通常用字母X,Y,ξ,η……表示。2.随机变量的特征(1)不确定性(随机性)。即在试验之前,不能确定随机变量的结果;(2)随机变量和函数一样是一种映射,它把随机试验的结果映为实数;(3)可类比性。可类比函数进行理解,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域。把随机变量的取值范围叫做随机变量的值域.知识拓展随机变量X是和随机事件A互相对应的。随机变量X的取值x1,x2,…是和A中的随机事件A1,A2,…一一对应的;随机变量X中的每个取值x1,x2,…的概率P(X=x1),P(X=x2),…分别等于随机事件A1,A2,…所发生的概率P(A1),P(A2)….随机变量X不但有取值范围,而且还要有取值的概率,这是和通常的变量所不同的地方.辨析比较要注意区分随机变量ξ(u)与以前所学函数f(x),这是两个不同的概念。函数f(x)是研究确定性现象的,它定义在实数轴上,有确定的因果关系,概率中的随机变量是研究随机现象的,它定义在由全部试验结果所组成的集合上,它的取值是不能预知的.我们研究随机变量,关心的是随机变量能取哪些值,即都包含哪些试验结果(基本事件),以及注意研究它的统计规律。3。离散型随机变量所有取值可以一一列出的随机变量,称为离散型随机变量。如:抛掷骰子向上的面的点数是离散型随机变量,它的取值只有1,2,3,4,5,6这六个结果。二、离散型随机变量的分布列1。X的分布列一般地,若离散型随机变量X可能取的不同值为x1,x2,…,xi,…xn,X取每一个值xi(i=1,2,…,n)的概率P(X=xi)=Pi,以表格形式表示如下:Xx1x2…xi…xnPp1p2…pI…pn这个表格称为离散型随机变量X的概率分布列,简称为X的分布列.要点提示X的分布列从整体上反映了随机变量取各个值的可能性的大小,反映了随机变量取值的规律性.为了表达简单,也用等式P(X=xi)=pi,i=1,2,…,n表示X的分布列.2.离散型随机变量的分布列的性质(1)pi≥0,i=1,2,…,n;(2)=1.性质:(1)是由概率的非负性所决定的。性质(2)是因为一次试验的各种结果是互斥的,而全部结果之和为一必然事件。深化升华由于离散型随机变量取的各个可能值之间彼此互斥,因此离散型随机变量在某一范围内取值的概率等于它取这个范围内各个值的概率之和。方法归纳求离散型随机变量的分布列的步骤:①首先确定随机变量X的取值有哪些;②求出每种取值下随机事件的概率;③列表对应,即为分布列。上述步骤的关键是各随机事件的概率的计算.3.两点分布如果随机变量X的分布列是X01P1-pp我们称这样的分布为两点分布列.如果随机变量X的分布列为两点分布列,就称X服从两点分布,而称p=P(X=1)为成功概率。深化升华两点分布又称0-1分布。由于只有两个可能结果的随机试验叫伯努利试验,所以这种分布还称为伯努利分布。两点分布的应用非常广泛,如抽取的彩券是否中奖;买回的一件产品是否为正品;新生婴儿的性别;投篮是否命中等等,都可以用两点分布来研究.两点分布的试验结果只有两个可能性,且其概率之和为1.4。超几何分布在含有M件次品的N件产品中,任取n件,其中恰有X件次品数,则事件{X=k}发生的概率为P{X=k}=,k=0,1,2,…,m,其中m=min{M,n},且n≤N,M≤N,n,M,N∈N*,称分布列X01…mP…为超几何分布列。如果随机变量X的分布列为超几何分布列,则称随机变量X服从超几何分布。超几何分布列给出了求解这类问题的方法,可以做公式直接运用求解,但不能机械地去记忆公式,要在理解的前提下记忆。在超几何分布中,只要知道N,M和n,就可以根据公式,求出X取不同m值时的概率P(X=m),从而列出X的分布列。疑点突破在模型应用中,有时所遇到的问题是直接符合超几何分布的,这时只需直接利用模型即可;而有时需要构造或转化才可以利用.如从10名女生和15名男生中任选5名参加校体操队,求至少有3名女同学被选中的概率.此题与模型对照有点差别,但稍作转化再比较便知,设取出女生数为X,则N=25,n=10,M=5.就可以借助于模型处理了.问题·探究问题1随机变量是映射吗?它与函数的区别与联系是什么?思路:随机变量和函数一样,也是一个映射。随机变量是人为的把随机试验的结果映为实数,这与函数概念的本质是一样的.只不过函数是把实数映为实数。在这两种映射之间,试验结果的范围相当于函数的定义域,随机变量的取值范围相当于函数的值域。探究:随机变量是随机试验的结果数量化,变量的取值对应于随机试验的某一个随机事件,在学习时,我们要注意随机变量与以前所学的变量的区别与联系。问题2如果已知某离散型随机变量的分布列如下Ξ12…k…910Pbab…ak—1b…a8bA9你能根据上表及离散型随机变量的性质发现a和b的关系吗?思路:离散型随机变量的分布列有两个性质:(1)pi≥0,i=1,2,…,n;(2)=1。由性质(2)可得b+a9=1,则b=1-a9b=(1-a),所以可得b=1-a,即a+b=1.再由分布列的性质(1)知各个值对应的概率应为非负实数.综上可以发现a与b必须满足:①a≥0,b≥0;②a+b=1.探究:求分布列可以分为以下几步:(1)明确随机变量的取值范围;(2)求出每一个随机变量值的概率;(3)列成表格得分布列.分布列的求解应注意以下几点:(1)搞清随机变量每个取值对应的随机事件;(2)计算必须准确无误;(3)注意运用分布列的两条性质检验所求的分布列是否正确。典题·热题例1下列所述:①某座大桥一天经过的车辆数ξ;②某无线电寻呼台一天内收到寻呼次数ξ;③一天之内的温度ξ;④一位射击手对目标进行射击,击中目标得1分,未击中目标得0分,用ξ表示该射击手在一次射击中的得分.其中ξ是离散型随机变量的是()A.①②③B。①②④C。①③④D。②③④思路分析:根据离散型随机变量的定义,可知①②④中的ξ可能取的值,可以按一次序列出,而③中的ξ可以取某一区间内的一切值,属于连续型的随机变量,故选B。答案:B方法归纳判断一个随机变量是否是离散型随机变量,就是看这一变量的所有可能的取值是否可以一一列出。例2袋中有1个白球和4个黑球,每次从中任取一个球,每次取出的黑球不再放回,直到取出白球为止。求取球次数X的概率分布列.思路分析:要求取球次数X的概率分布列,需先写出X的可能取值,然后求出X中每一个可能值的概率.本题在求概率时要注意题中条件,每次从中任取一球,且每次取出黑球不再放回.解:X的可能取值为1,2,3,4,5,则第1次取到白球的概率为:P(X=1)=,第2次取到白球的概率为:P(X=2)=,第3次取到白球的概率为:P(X=3)=,第4次取到白球的概率为:P(X=4)=,第5次取到白球的概率为:P(X=5)=,所以X的分布列是:X12345P拓展延伸一个袋中有6个同样大小的黑球,编号为1,2,3,4,5,6,现从中随机取出3个球,以X表示取出球的最大号码,求X的概率分布列。思路分析:随机变量X的所有可能取值为3,4,5,6。“X=3"对应条件“取出3个球,编号为1,2,3”;“X=4"对应条件“取出3个球中恰好取到4号球和1,2,3号球中的2个”;“X=5”对应条件“取出3个球中恰好取到5号球和1,2,3,4号球中的2个";“X=6"对应条件“取出3个球中恰好取到6号球和1,2,3,4,5号球中的2个"。而要求其概率则要利用古典概型的概率公式和排列组合知识求解,从而获得X的分布列。解:随机变量X的可能取值为3,4,5,6.从袋中随机地取3个球,包含的基本事件总数为,事件“X=3”包含的基本事件总数为;事件“X=4”包含的基本事件总数为;事件“X=5”包含的基本事件总数为;事件“X=6”包含的基本事件总数为。于是有P(X=3)=;P(X=4)=;P(X=5)=;P(X=6)=。所以随机变量X的分布列为X3456P方法归纳确定离散型随机变量X的分布列,要根据其常规步骤来执行.其关键是要搞清X取每一个值对应的随机事件,进一步利用排列组合知识求出X取每个值的概率.例3(2005山东高考)袋中装有黑球和白球共7个,从中任取2个球都是白球的概率为,现有甲、乙两人从袋中轮流摸取1球,甲先取,乙后取,然后甲再取……取后不放回,直到两人中有一人取到白球时既终止,每个球在每一次被取出的机会是等可能的,用ξ表示取球终止所需要的取球次数。(1)求袋中所有的白球的个数;(2)求随机变量ξ的概率分布;(3)求甲取到白球的概率。思路分析:(1)求袋中原有白球的个数,需设出白球的个数,利用古典概型公式,列出方程组求解;(2)写出ξ的可能取值,求出相应概率,写出ξ的分布列;(3)利用所求的分布列,甲取到白球的概率为P(A)=P(ξ=1)+P(ξ=3)+P(ξ=5)。解:(1)设袋中原有n个白球,由题意知.可得n=3或n=—2(舍去),即袋中原有3个白球.(2)由题意,ξ的可能取值为1,2,3,4,5。P(ξ=1)=;P(ξ=2)=;P(ξ=3)=;P(ξ=4)=;P(ξ=5)=所以ξ的分布列为Ξ12345P(3)因为甲先取,所以甲只有可能在第一次,第三次和第五次取球,记“甲取到白球”为事件A,则P(A)=P(ξ=1)+P(ξ=3)+P(ξ=5)=。深化升华本题考查知识面广,包括等可能事件,互斥事件,随机变量的概率分布等知识,可以运用方程组的思想求出白球的个数.例4将3个小球任意放入4个大玻璃杯中去,杯子中球的最多个数记为X,求X的分布列。思路分析:应首先明确杯子中球的最多个数X的可能值,再求相应的概率,列表即可.解:由题意可知,杯子中球的最多个数X的所有可能值为1,2,3。当X=1时,对应于4个杯子中恰有三个杯子各放
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职教中心招生管理制度
- 社区共享农田管理制度
- 新媒体环境下2025年广播媒体融合创新发展策略与路径研究报告
- 工程合同清理方案(3篇)
- 2025年梅州客运驾驶员从业资格考试
- 中介公司日常管理制度
- 上海物业信用管理制度
- 遵义辅警层级化管理制度
- 中点厨房工作管理制度
- 中学德育主任管理制度
- 2025年报关操作技巧与核心要点
- 2025年统编版小学语文五年级下册期末综合测试题及参考答案
- 浙江临安招聘事业编制笔试真题2024
- 儿童周末兴趣活动方案
- 2024-2025学年人教版八年级数学下册期末综合复习解答压轴题培优提升专题训练+
- 2025年高考数学全国一卷试题真题及答案详解(精校打印)
- DB62T 4130-2020 公路混凝土构件蒸汽养护技术规程
- 洗浴中心保安合同范本
- 行政人事部所需各类表格模板
- 2024北京西城区六年级毕业考英语试题及答案
- SH3508标准培训课件
评论
0/150
提交评论