




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省温州十五校联合体2025届数学高二上期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知等差数列前项和为,若,则的公差为()A.4 B.3C.2 D.12.已知椭圆C:的左右焦点为F1,F2,离心率为,过F2的直线l交C与A,B两点,若△AF1B的周长为,则C的方程为()A. B.C. D.3.平面的法向量为,平面的法向量为,则下列命题正确的是()A.,平行 B.,垂直C.,重合 D.,相交不垂直4.在公比为为q等比数列中,是数列的前n项和,若,则下列说法正确的是()A. B.数列是等比数列C. D.5.若双曲线的两个焦点为,点是上的一点,且,则双曲线的渐近线与轴的夹角的取值范围是()A. B.C. D.6.七巧板是一种古老的中国传统智力玩具,顾名思义,是由七块板组成的.这七块板可拼成许多图形(1600种以上),如图所示,某同学用七巧板拼成了一个“鸽子”形状,若从“鸽子”身上任取一点,则取自“鸽子头部”(图中阴影部分)的概率是()A. B.C. D.7.已知圆:和点,是圆上一点,线段的垂直平分线交于点,则点的轨迹方程是:()A. B.C. D.8.已知函数,则()A.3 B.C. D.9.如图,已知二面角平面角的大小为,其棱上有、两点,、分别在这个二面角的两个半平面内,且都与垂直.已知,,则()A. B.C. D.10.已知圆,直线,直线l被圆O截得的弦长最短为()A. B.C.8 D.911.数列中,满足,,设,则()A. B.C. D.12.若圆与圆相外切,则的值为()A. B.C.1 D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,若递增数列满足,则实数的取值范围为__________.14.双曲线的左顶点为,虚轴的一个端点为,右焦点到直线的距离为,则双曲线的离心率为__________.15.已知双曲线的左右焦点分别为,过点的直线交双曲线右支于A,B两点,若是等腰三角形,且,则的面积为___________.16.若直线与直线平行,则实数m的值为____________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知O为坐标原点,、为椭圆C的左、右焦点,,P为椭圆C的上顶点,以P为圆心且过、的圆与直线相切(1)求椭圆C的标准方程;(2)若过点作直线l,交椭圆C于M,N两点(l与x轴不重合),在x轴上是否存在一点T,使得直线TM与TN的斜率之积为定值?若存在,请求出所有满足条件的点T的坐标;若不存在,请说明理由18.(12分)已知函数(Ⅰ)若的图象在点处的切线与轴负半轴有公共点,求的取值范围;(Ⅱ)当时,求的最值19.(12分)已知函数,曲线在处的切线方程为.(Ⅰ)求实数,的值;(Ⅱ)求在区间上的最值.20.(12分)已知数列和满足,(1)若,求的通项公式;(2)若,,证明为等差数列,并求和的通项公式21.(12分)如图,在正四棱柱中,是上的点,满足为等边三角形.(1)求证:平面;(2)求二面角的余弦值.22.(10分)已知动点M到点F(0,2)的距离,与点M到直线l:y=﹣2的距离相等.(1)求动点M的轨迹方程;(2)若过点F且斜率为1的直线与动点M的轨迹交于A,B两点,求线段AB的长度.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】由已知,结合等差数列前n项和公式、通项公式列方程组求公差即可.详解】由题设,,解得.故选:A2、A【解析】根据椭圆的定义可得△AF1B的周长为4a,由题意求出a,结合离心率计算即可求出c,再求出b即可.【详解】由椭圆的定义知,△AF1B的周长为,又△AF1B的周长为4,则,,,,,所以方程为,故选:A.3、B【解析】根据可判断两平面垂直.【详解】因为,所以,所以,垂直.故选:B.4、D【解析】根据等比数列的通项公式、前项和公式的基本量运算,即可得到答案;【详解】,,故A错误;,,显然数列不是等比数列,故B错误;,故C错误;,,故D成立;故选:D5、B【解析】由条件结合双曲线的定义可得,然后可得,然后可求出的范围即可.【详解】由双曲线的定义可得,结合可得当点不为双曲线的顶点时,可得,即当点为双曲线的顶点时,可得,即所以,所以,所以所以双曲线的渐近线与轴的夹角的取值范围是故选:B6、C【解析】设正方形边长为1,求出七巧板中“4”这一块的面积,然后计算概率【详解】设正方形边长为1,由正方形中七巧板形状知“4”这一块是正方形,边长为,面积为,所以概率为故选:C7、B【解析】先由在线段的垂直平分线上得出,再由题意得出,进而由椭圆定义可求出点的轨迹方程.【详解】如图,因为在线段的垂直平分线上,所以,又点在圆上,所以,因此,点在以、为焦点的椭圆上.其中,,则.从而点的轨迹方程是.故选:B.8、B【解析】由导数运算法则求出导发函数,然后可得导数值【详解】由题意,所以故选:B9、C【解析】以、为邻边作平行四边形,连接,计算出、的长,证明出,利用勾股定理可求得的长.【详解】如下图所示,以、为邻边作平行四边形,连接,因为,,则,又因为,,,故二面角的平面角为,因为四边形为平行四边形,则,,因为,故为等边三角形,则,,则,,,故平面,因为平面,则,故.故选:C.10、B【解析】先求得直线过定点,再根据当点与圆心连线垂直于直线l时,被圆O截得的弦长最短求解.【详解】因为直线方程,即为,所以直线过定点,因为点在圆的内部,当点与圆心连线垂直于直线l时,被圆O截得的弦长最短,点与圆心(0,0)的距离为,此时,最短弦长为,故选:B11、C【解析】由递推公式可归纳得,由此可以求出的值【详解】因为,,所以,,,因此故选C【点睛】本题主要考查利用数列的递推式求值和归纳推理思想的应用,意在考查学生合情推理的意识和数学建模能力12、D【解析】确定出两圆的圆心和半径,然后由两圆的位置关系建立方程求解即可.【详解】由可得,所以圆的圆心为,半径为,由可得,所以圆的圆心为,半径为,因为两圆相外切,所以,解得,故选:D二、填空题:本题共4小题,每小题5分,共20分。13、【解析】根据的单调性列不等式,由此求得的取值范围.【详解】由于是递增数列,所以.所以的取值范围是.故答案为:14、【解析】根据双曲线左顶点和虚轴端点的定义,结合点到直线距离公式、双曲线的离心率公式进行求解即可.【详解】不妨设在纵轴的正半轴上,由双曲线的标准方程可知:,右焦点的坐标为,直线的方程为:,因为右焦点到直线的距离为,所以有,即双曲线的离心率为,故答案为:15、【解析】根据题意可知,,再结合,即可求出各边,从而求出的面积【详解】,所以,而是的等腰三角形,所以,故的面积为故答案为:16、【解析】利用两条直线平行的充要条件,列式求解即可【详解】解:因为直线与直线平行,所以,解得故答案为:三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)存在;.【解析】(1)根据给定条件求出a,c,b即可作答.(2)联立直线l与椭圆C的方程,利用斜率坐标公式并结合韦达定理计算即可推理作答.【小问1详解】依题意,,,,由椭圆定义知:椭圆长轴长,即,而半焦距,即有短半轴长,所以椭圆C的标准方程为:【小问2详解】依题意,设直线l方程为,由消去x并整理得,设,,则,,假定存在点,直线TM与TN的斜率分别为,,,要使为定值,必有,即,当时,,,当时,,,所以存在点,使得直线TM与TN的斜率之积为定值【点睛】方法点睛:求定值问题常见的方法有两种:(1)从特殊入手,求出定值,再证明这个值与变量无关(2)直接推理、计算,并在计算推理的过程中消去变量,从而得到定值18、(Ⅰ);(Ⅱ)答案见解析.【解析】(Ⅰ)求导数.求得切线方程,由切线与轴的交点在负半轴可得的范围;(Ⅱ)求导数,由的正负确定单调性,极值得最值【详解】命题意图本题主要考查导数在函数问题中的应用解析(Ⅰ)由题可知,,故可得的图象在点处的切线方程为令,可得由题意可得,即,解得,即的取值范围为(Ⅱ)当时,,易知在上单调递增又,当时,,此时单调递减,当时,,此时单调递增,无最大值【点睛】关键点点睛:本题考查用导数的几何意义,考查用导数求函数的的最值.解题关键是求出导函数,由的正负确定单调性,得函数的极值,从而可得最值19、(Ⅰ)最大值为,最小值为.(Ⅱ)最大值为,最小值为.【解析】(Ⅰ)切点在函数上,也在切线方程为上,得到一个式子,切线的斜率等于曲线在的导数,得到另外一个式子,联立可求实数,的值;(Ⅱ)函数在闭区间的最值在极值点或者端点处取得,通过比较大小可得最大值和最小值.【详解】解:(Ⅰ),∵曲线在处的切线方程为,∴解得,.(Ⅱ)由(Ⅰ)知,,则,令,解得,∴在上单调递减,在上单调递增,又,,,∴在区间上的最大值为,最小值为.【点睛】本题主要考查导函数与切线方程的关系以及利用导函数求最值的问题.20、(1)(2)证明见解析,,【解析】(1)代入可得,变形得构造等比数列求的通项公式;(2)先由已知得,先分别求出,的通项公式,然后合并可得的通项公式,进而可得的通项公式【小问1详解】当,时,,所以,即,整理得,所以是以为首项,为公比的等比数列故,即【小问2详解】当时,由,,得,所以因为,所以,则是以为首项,2为公差的等差数列,,;是以为首项,2为公差的等差数列,,综上所述,所以,,故是以2为首项,1为公差的等差数列当时,,且满足,所以21、(1)证明见解析(2)【解析】(1)根据题意证明,,然后根据线面垂直的判定定理证明问题;(2)以,,为轴的正方向建立空间直角坐标系,求平面,平面的法向量,求法向量的夹角,根据二面角的余弦值与法向量的夹角的余弦的关系确定二面角的余弦值.【小问1详解】由题意,,等边三角形,,∵平面ABCD,∴,则,即为中点.连接,∵平面,平面,∴,易得,则,又,于是,即,同理,即,又,平面平面.【小问2详解】由题意直线平面,四边形为正方形,故以,,为轴的正方向建立空间直角坐标系,则,.设面的法向量为,同理可得面的法向量,∴二面角的余弦值为22、(1)x2=8y(2)16【解析】小问1:由抛物线的定义可求得动点M的轨迹方程;小问2:
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 雪糕供货商合同协议书
- 计算机网络安全必考试题及答案
- 购买苗木的合同协议书
- 融资助力合同协议书模板
- 保险会计试题库及答案
- 销售合同转让协议书样板
- 快递驿站服务合同协议书
- 行政组织中的沟通壁垒及其解决方案研究试题及答案
- 监理师考试相似题解析试题及答案2025
- 面试题及答案小结
- 【9语一模】2025年4月天津市和平区九年级中考一模语文试卷(含答案)
- 骨科科室工作总结汇报
- 青少年网络安全知识讲座
- 2025年高考物理大题突破+限时集训(含解析)
- 三基中医培训试题及答案
- GB 28050-2025食品安全国家标准预包装食品营养标签通则
- 河北省石家庄市2025届普通高中毕业年级教学质量检测(二)数学试卷(含答案)
- 成人重症患者颅内压增高防控护理专家共识(2024版)解读课件
- 防机械伤害培训课件
- srs13a中文说明书编程手册
- 江西省部分高中学校2024-2025学年高一下学期联考生物试卷(原卷版+解析版)
评论
0/150
提交评论