江西省抚州市临川第一中学2025届高一上数学期末学业质量监测试题含解析_第1页
江西省抚州市临川第一中学2025届高一上数学期末学业质量监测试题含解析_第2页
江西省抚州市临川第一中学2025届高一上数学期末学业质量监测试题含解析_第3页
江西省抚州市临川第一中学2025届高一上数学期末学业质量监测试题含解析_第4页
江西省抚州市临川第一中学2025届高一上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩8页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省抚州市临川第一中学2025届高一上数学期末学业质量监测试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.函数的图像大致为()A. B.C. D.2.已知函数的图像是连续的,根据如下对应值表:x1234567239-711-5-12-26函数在区间上的零点至少有()A.5个 B.4个C.3个 D.2个3.已知函数,则在上的最大值与最小值之和为()A. B.C. D.4.设是互不重合的平面,m,n是互不重合的直线,给出下面四个说法:①若,,则;②若,,则;③若,,则;④若,,,则.其中所有错误说法的序号是()A.①③ B.①④C.①③④ D.②③④5.已知角终边经过点,且,则的值是()A. B.C. D.6.用二分法求如图所示函数f(x)的零点时,不可能求出的零点是()A.x1 B.x2C.x3 D.x47.幂函数的图象过点,则函数的值域是()A. B.C. D.8.已知是偶函数,且在上是减函数,又,则的解集为()A. B.C. D.9.已知函数y=xa,y=xb,y=cx的图象如图所示,则A.c<b<a B.a<b<cC.c<a<b D.a<c<b10.设是两个不同的平面,是直线且,,若使成立,则需增加条件()A.是直线且, B.是异面直线,C.是相交直线且, D.是平行直线且,二、填空题:本大题共6小题,每小题5分,共30分。11.函数在区间上单调递增,则实数的取值范围_______.12.写出一个能说明“若函数为奇函数,则”是假命题的函数:_________.13.已知函数,且,则__________14.中国剪纸是一种用剪刀或刻刀在纸上剪刻花纹,用于装点生活或配合其他民俗活动的民间艺术.现有两名剪纸艺人创作甲、乙两种作品,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名艺人上午创作的甲作品数和乙作品数,点Bi的横、纵坐标分别为第i名艺人下午创作的甲作品数和乙作品数,i=1,①该天上午第1名艺人创作的甲作品数比乙作品数少;②该天下午第1名艺人创作的乙作品数比第2名艺人创作的乙作品数少;③该天第1名艺人创作的作品总数比第2名艺人创作的作品总数少;④该天第2名艺人创作的作品总数比第1名艺人创作的作品总数少.其中所有正确结论序号是___________.15.已知函数,,若对任意,总存在,使得成立,则实数的取值范围为__________.16.已知,且,则的值为______三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.已知定义在上的奇函数,当时,.(1)求函数在上的解析式;(2)在给出的直角坐标系中作出的图像,并写出函数的单调区间.18.已知函数.(1)求的最小正周期;(2)求函数的单调增区间;(3)求函数在区间上值域19.已知函数,,其中(1)写出的单调区间(无需证明);(2)求在区间上的最小值;(3)若对任意,均存在,使得成立,求实数的取值范围20.已知,,,为第二象限角,求和的值.21.已知,且向量在向量的方向上的投影为,求:(1)与的夹角;(2).

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】通过判断函数的奇偶性排除CD,通过取特殊点排除B,由此可得正确答案.【详解】∵∴函数是偶函数,其图像关于轴对称,∴排除CD选项;又时,,∴,排除B,故选.2、C【解析】利用零点存在性定理即可求解.【详解】函数的图像是连续的,;;,所以在、,之间一定有零点,即函数在区间上的零点至少有3个.故选:C3、D【解析】首先利用两角和与差的正弦公式将函数化简为,当时,,由正弦型函数的单调性即可求出最值.【详解】当时,,所以最大值与最小值之和为:.故选:D【点睛】本题考查两角和与差的正弦公式,正弦型函数的单调性与最值,属于基础题.4、C【解析】①利用平面与平面的位置关系判断;②利用线面垂直的性质定理判断;③利用直线与直线的位置关系判断;④利用面面垂直的性质定理判断.【详解】①若,,则或相交,故错误;②若,,则可得,故正确;③若,,则,故错误;④若,,,当时,,故错误.故选:C5、A【解析】由终边上的点及正切值求参数m,再根据正弦函数的定义求.【详解】由题设,,可得,所以.故选:A6、C【解析】观察图象可知:点x3的附近两旁的函数值都为负值,∴点x3不能用二分法求,故选C.7、C【解析】设,带点计算可得,得到,令转化为二次函数的值域求解即可.【详解】设,代入点得,则,令,函数的值域是.故选:C.8、B【解析】根据题意推得函数在上是增函数,结合,确定函数值的正负情况,进而求得答案.【详解】是偶函数,且在上是减函数,又,则,且在上是增函数,故时,,时,,故的解集是,故选:B.9、A【解析】由指数函数、幂函数的图象和性质,结合图象可得a>1,b=12,【详解】由图象可知:a>1,y=xb的图象经过点4,2当x=1时,y=c∴c<b<a,故选:A【点睛】本题考查了函数图象的识别,关键掌握指数函数,对数函数和幂函数的图象和性质,属于基础题.10、C【解析】要使成立,需要其中一个面的两条相交直线与另一个面平行,是相交直线且,,,,由平面和平面平行的判定定理可得.故选C.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由对数真数大于零可知在上恒成立,利用分离变量的方法可求得,此时结合复合函数单调性的判断可知在上单调递增,由此可确定的取值范围.【详解】由题意知:在上恒成立,在上恒成立,在上单调递减,,;当时,单调递增,又此时在上单调递增,在上单调递增,满足题意;实数的取值范围为.故答案为:.12、(答案不唯一)【解析】由题意,只需找一个奇函数,0不在定义域中即可.【详解】由题意,为奇函数且,则满足题意故答案为:13、或【解析】对分和两类情况,解指数幂方程和对数方程,即可求出结果.【详解】当时,因为,所以,所以,经检验,满足题意;当时,因为,所以,即,所以,经检验,满足题意.故答案为:或14、①②④【解析】根据点的坐标的意义结合图形逐个分析判断即可【详解】对于①,由题意可知,A1的横、纵坐标分别为第1名艺人上午创作的甲作品数和乙作品数,由图可知A1的横坐标小于纵坐标,所以该天上午第对于②,由题意可知,B1的纵坐标为第1名艺人下午创作的乙作品数,B2的纵坐标为第2名艺人下午创作的乙作品数,由图可知B1的纵坐标小于B2的纵坐标,所以该天下午第对于③,④,由图可知,A1,B1的横、纵坐标之和大于A2故答案为:①②④15、【解析】由题分析若对任意,总存在,使得成立,则的最大值小于等于的最大值,进而求解即可【详解】由题,因为,对于函数,则当时,是单调递增的一次函数,则;当时,在上单调递增,在上单调递减,则,所以的最大值为4;对于函数,,因为,所以,所以;所以,即,故,故答案为:【点睛】本题考查函数恒成立问题,考查分段函数的最值,考查正弦型函数的最值,考查转化思想16、【解析】根据同角的三角函数的关系,利用结合两角和的余弦公式即可求出【详解】,,,,,故答案为.【点睛】本题主要考查同角的三角函数的关系,两角和的余弦公式,属于中档题.已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值,角的变换是解题的关键三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)(2)图像答案见解析,单调递增区间为,单调递减区间为【解析】(1)由函数的奇偶性的定义和已知解析式,计算时的解析式,可得所求的解析式;(2)由分段函数的图像画法,可得所求图像,结合的图像,可得的单调区间【小问1详解】设,则,所以,又为奇函数,所以,又为定义在上的奇函数,所以,所以【小问2详解】作出函数的图像,如图所示:函数的单调递增区间为,单调递减区间为.18、(1);(2);(3).【解析】(1)根据二倍角公式和诱导公式,结合辅助角公式可求得解析式,从而利用周期公式可求得周期;(2)利用整体代换即可求单调增区间;(3)由得,从而可得的取值范围.【详解】(1),所以最小正周期(2)由,得,所以函数的单调递增区间是.(3)由得,则,所以19、(1)的单调递增区间是,单调递减区间是(2)(3)【解析】(1)利用去掉绝对值及一次函数的性质即可求解;(2)根据(1)的结论,利用单调性与最值的关系即可求解;(3)根据已知条件将问题转化为,再利用函数的单调性与最值的关系,分情况讨论即可求解.【小问1详解】由,得,所以函数的单调递增区间是,单调递减区间是,【小问2详解】由(1)知,函数的单调递增区间是,单调递减区间是,当,即时,当时,函数取得最小值为,当,即时,当时,函数取得最小值为,综上所述,函数在区间上的最小值为.【小问3详解】因为对任意,均存在,使得成立等价于,,.而当时,,故必有由第(2)小题可知,,且,所以,①当时,∴,可得,②当时,∴,可得,③

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论