甘肃省永昌县第四中学2025届数学高二上期末经典模拟试题含解析_第1页
甘肃省永昌县第四中学2025届数学高二上期末经典模拟试题含解析_第2页
甘肃省永昌县第四中学2025届数学高二上期末经典模拟试题含解析_第3页
甘肃省永昌县第四中学2025届数学高二上期末经典模拟试题含解析_第4页
甘肃省永昌县第四中学2025届数学高二上期末经典模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

甘肃省永昌县第四中学2025届数学高二上期末经典模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.为发挥我市“示范性高中”的辐射带动作用,促进教育的均衡发展,共享优质教育资源.现分派我市“示范性高中”的5名教师到,,三所薄弱学校支教,开展送教下乡活动,每所学校至少分派一人,其中教师甲不能到学校,则不同分派方案的种数是()A.150 B.136C.124 D.1002.在圆上任取一点P,过点P作x轴的垂线段PD,D为垂足,当点P在圆上运动时,线段PD的中点M的轨迹记为C,则曲线C的离心率为()A. B.C. D.3.若双曲线的渐近线方程为,则实数a的值为()A B.C.2 D.4.过点且与直线垂直的直线方程是()A. B.C. D.5.曲线的一个焦点F到两条渐近线的垂线段分别为FA,FB,O为坐标原点,若四边形OAFB是菱形,则双曲线C的离心率等于()A. B.C.2 D.6.已知双曲线的左、右焦点分别为,点A在双曲线上,且轴,若则双曲线的离心率等于()A. B.C.2 D.37.已知在四棱锥中,平面,底面是边长为4的正方形,,E为棱的中点,则直线与平面所成角的正弦值为()A. B.C. D.8.某种疾病的患病率为0.5%,通过验血诊断该病的误诊率为2%,即非患者中有2%的人验血结果为阳性,患者中有2%的人验血结果为阴性,随机抽取一人进行验血,则其验血结果为阳性的概率为()A.0.0689 B.0.049C.0.0248 D.0.029.已知等差数列,,则公差d等于()A. B.C.3 D.-310.已知中,内角,,的对边分别为,,,,.若为直角三角形,则的面积为()A. B.C.或 D.或11.我国古代数学著作《算法统宗》中有这样一段记载:“一百八十九里关,初行健步不为难,次日脚痛减一半,六朝才得到其关.”其大意为:“有一个人共行走了189里的路程,第一天健步行走,从第二天起,因脚痛每天走的路程为前一天的一半,走了6天才到达目的地.”则该人第一天行走的路程为()A.108里 B.96里C.64里 D.48里12.已知直线过点,当直线与圆有两个不同的交点时,其斜率的取值范围是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.小明同学发现家中墙壁上灯光边界类似双曲线的一支.如图,P为双曲线的顶点,经过测量发现,该双曲线的渐近线相互垂直,AB⊥PC,AB=60cm,PC=20cm,双曲线的焦点位于直线PC上,则该双曲线的焦距为____cm.14.在等比数列中,,,则公比________.15.用一个平面去截半径为5cm的球,截面面积是则球心到截面的距离为_______16.在等差数列中,,那么等于______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,为平行四边形,,平面,且,点是的中点.(1)求证:平面;(2)在线段上(不含端点)是否存在一点,使得二面角的余弦值为?若存在,确定的位置;若不存在,请说明理由.18.(12分)已知抛物线C:的焦点为F,为抛物线C上一点,且(1)求抛物线C的方程:(2)若以点为圆心,为半径的圆与C的准线交于A,B两点,过A,B分别作准线的垂线交抛物线C于D,E两点,若,证明直线DE过定点19.(12分)如图,在几何体中,底面是边长为2的正三角形,平面,,且,是的中点(1)求证:平面;(2)求异面直线与所成的角的余弦值20.(12分)已知圆过点且与圆外切于点,直线将圆分成弧长之比为的两段圆弧(1)求圆的标准方程;(2)直线的斜率21.(12分)已知命题p:点在椭圆内;命题q:函数在R上单调递增(1)若p为真命题,求m的取值范围;(2)若为假命题,求实数m的取值范围22.(10分)已知数列中,,().(1)求证:是等比数列,并求的通项公式;(2)数列满足,求数列的前项和为.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】对甲所在组的人数分类讨论即得解.【详解】当甲一个人去一个学校时,有种;当甲所在的学校有两个老师时,有种;当甲所在的学校有三个老师时,有种;所以共有28+48+24=100种.故选:D【点睛】方法点睛:排列组合常用方法有:简单问题直接法、小数问题列举法、相邻问题捆绑法、不相邻问题插空法、至少问题间接法、复杂问题分类法、等概率问题缩倍法.要根据已知条件灵活选择方法求解.2、B【解析】设,,则由题意可得,代入圆方程中化简可得曲线C的方程,从而可求出离心率【详解】设,,则,得,所以,因为点在圆上,所以,即,所以点的轨迹方程为,所以,则所以离心率为,故选:B3、D【解析】由双曲线的渐近线方程结合已知可得.【详解】双曲线方程为所以渐近线为,故,解得:.故选:D4、C【解析】根据两直线垂直时斜率乘积为,可以直接求出所求直线的斜率,再根据点斜式求出直线方程,最后化成一般式方程即可.【详解】因为直线的斜率为,故所求直线的斜率等于,所求直线的方程为,即,故选:C5、A【解析】依题意可得为正方形,即可得到,从而得到双曲线的渐近线为,即可求出双曲线的离心率;【详解】解:依题意,,且四边形为菱形,所以为正方形,所以,即双曲线的渐近线为,即,所以;故选:A6、B【解析】由双曲线定义结合通径公式、化简得出,最后得出离心率.【详解】,,,解得故选:B7、B【解析】建立空间直角坐标系,以向量法去求直线与平面所成角的正弦值即可.【详解】平面,底面是边长为4的正方形,则有,而,故平面,以A为原点,分别以AB、AD、AP所在直线为x轴、y轴、z轴建立空间直角坐标系如图:则,,,设直线与平面所成角为,又由题可知为平面的一个法向量,则故选:B8、C【解析】根据全概率公式即可求出【详解】随机抽取一人进行验血,则其验血结果为阳性的概率为0.0248故选:C9、B【解析】根据题意,利用公式,即可求解.【详解】由题意,等差数列,,可得等差数列的公差.故选:B.10、C【解析】由正弦定理化角为边后,由余弦定理求得,然后分类讨论:或求解【详解】由正弦定理,可化为:,即,所以,,所以,又为直角三角形,若,则,,,,若,则,,,故选:C11、B【解析】根据题意,记该人每天走的路程里数为,分析可得每天走的路程里数构成以的为公比的等比数列,由求得首项即可【详解】解:根据题意,记该人每天走的路程里数为,则数列是以的为公比的等比数列,又由这个人走了6天后到达目的地,即,则有,解可得:,故选:B.【点睛】本题考查数列的应用,涉及等比数列的通项公式以及前项和公式的运用,注意等比数列的性质的合理运用.12、A【解析】设直线方程,利用圆与直线的关系,确定圆心到直线的距离小于半径,即可求得斜率范围.【详解】如下图:设直线l的方程为即圆心为,半径是1又直线与圆有两个不同的交点故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】建立直角坐标系,利用代入法、双曲线的对称性进行求解即可.【详解】建立如图所示的直角坐标系,设双曲线的标准方程为:,因为该双曲线的渐近线相互垂直,所以,即,因为AB=60cm,PC=20cm,所以点的坐标为:,代入,得:,因此有,所以该双曲线的焦距为,故答案为:14、【解析】根据等比数列的性质求解即可.【详解】因为等比数列中,故,又,故,故.故答案为:【点睛】本题主要考查了等比数列的性质运用,需要注意分析项与公比的正负,属于基础题.15、4cm【解析】根据圆面积公式算出截面圆的半径,利用球的截面圆性质与勾股定理算出球心到截面的距离【详解】解:设截面圆的半径为r,截面的面积是,,可得又球的半径为5cm,根据球的截面圆性质,可得截面到球心的距离为故答案为:4cm【点睛】本题主要考查了球的截面圆性质、勾股定理等知识,考查了空间想象能力,属于基础题16、14【解析】根据等差数列的性质得到,求得,再由,即可求解.【详解】因为数列为等差数列,且,根据等差数列的性质,可得,解答,又由.故答案为:14.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)存在,【解析】(1)连接交于点,由三角形中位线性质知,由线面平行判定定理证得结论;(2)以为原点建立空间直角坐标系,假设,可用表示出点坐标;根据二面角的向量求法可根据二面角的余弦值构造出关于的方程,从而解得结果.【详解】(1)连接交于点,连接,四边形为平行四边形,为中点,又为中点,,平面,平面,平面;(2)平面,,两两互相垂直,则以为坐标原点,可建立如下图所示的空间直角坐标系:则,,,,,,设,且,则,,即,设平面的法向量,又,,则,令,则,,;设平面的一个法向量,又,,则,令,则,,;,解得:或,二面角的余弦值为,二面角为锐二面角,不满足题意,舍去,即.在线段上存在点,时,二面角的余弦值为.【点睛】本题考查立体几何中的线面平行关系的证明、存在性问题的求解;求解存在性问题的关键是能够利用共线向量的方式将所求点坐标表示出来,进而利用二面角的向量求法构造方程;易错点是忽略二面角的范围,造成参数值求解错误.18、(1);(2)证明见解析.【解析】(1)解方程和即得解;(2)设,,将与圆P的方程联立得到韦达定理,再写出直线的方程即得解.【小问1详解】解:因为抛物线C上一点,且,所以到抛物线C的准线的距离为2则,,则,所以,故抛物线C的方程为【小问2详解】证明:由(1)知,则圆P的方程为设,,将与圆P的方程联立,可得,则,当时,,不妨令,则,此时;当时,直线DE的斜率为,则直线DE的方程为,即,即,令且,得,直线过点;综上,直线DE过定点19、(1)证明见解析;(2).【解析】(1)设为中点,连接,,证明四边形为平行四边形即可;(2)确定异面直线与所成的角为,计算三角形各边长,根据余弦定理计算得到答案.【小问1详解】设为中点,连接,,∵为中点,是的中点,,,故,且,故,且,∴四边形为平行四边形,∴,平面,平面,故平面.【小问2详解】∵,故异面直线与所成的角为,在中:,,.根据余弦定理:,所以异面直线与所成的角的余弦值为.20、(1);(2).【解析】(1)分析可知圆心在轴上,可设圆心,根据圆过点、可得出关于的方程,求出的值,可得出圆心的坐标,进而可求得圆的半径,即可得出圆的标准方程;(2)利用几何关系可求得圆心到直线的距离为,再利用点到直线的距离公式可求得的值.【小问1详解】解:圆的圆心为,记点、,直线即为轴,因为圆与圆外切于点,则圆心在轴上,设圆心,由可得,解得,则圆心,所以,圆的半径为,因此,圆的标准方程为.【小问2详解】解:由题意可知,直线截圆所得的弦在圆上对应的圆心角为,则圆心到直线的距离为,由点到直线的距离公式可得,解得.21、(1)(2)【解析】(1)根据题意列不等式组求解(2)判断的真假性后分别求解【小问1详解】由题意得,解得且故m的取值范围是【小问2详解】∵为假命题,∴p和q都是真命题,对于命题q,由题意得:恒成立,∴,∴,∴,解得故m的取值

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论