




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
贵州省铜仁市石阡县民族中学2025届高二上数学期末监测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若直线过点(1,2),(4,2+),则此直线的倾斜角是()A.30° B.45°C.60° D.90°2.已知圆C过点,圆心在x轴上,则圆C的方程为()A. B.C. D.3.平行直线:与:之间的距离等于()A. B.C. D.4.某城市2017年的空气质量状况如下表所示:污染指数3060100110130140概率其中污染指数时,空气质量为优;时,空气质量为良;时,空气质量为轻微污染,该城市2017年空气质量达到良或优的概率为()A. B.C. D.5.已知抛物线,则它的焦点坐标为()A. B.C. D.6.阿基米德既是古希腊著名的物理学家,也是著名的数学家,他利用“逼近法”得到椭圆的面积除以圆周率等于椭圆的长半轴长与短半轴长的乘积.若椭圆的中心为原点,焦点、在轴上,椭圆的面积为,且离心率为,则的标准方程为()A. B.C. D.7.某学习小组研究一种卫星接收天线(如图①所示),发现其曲面与轴截面的交线为抛物线,在轴截面内的卫星波束呈近似平行状态射入形为抛物线的接收天线,经反射聚焦到焦点处(如图②所示).已知接收天线的口径(直径)为3.6m,深度为0.6m,则该抛物线的焦点到顶点的距离为()A.1.35m B.2.05mC.2.7m D.5.4m8.下列双曲线中,以为一个焦点,以为一个顶点的双曲线方程是()A. B.C. D.9.椭圆的离心率为()A B.C. D.10.已知双曲线的左、右焦点分别为,,过作圆的切线分别交双曲线的左、右两支于,,且,则双曲线的渐近线方程为()A. B.C. D.11.已知,,且,则向量与的夹角为()A. B.C. D.12.如图,是水平放置的的直观图,其中,,分别与轴,轴平行,则()A.2 B.C.4 D.二、填空题:本题共4小题,每小题5分,共20分。13.我国古代,9是数字之极,代表尊贵之意,所以中国古代皇家建筑中包含许多与9相关的设计.例如,北京天坛圆丘的底面由扇环形的石板铺成(如图),最高一层是一块天心石,围绕它的第一圈有9块石板,从第二圈开始,每一圈比前一圈多9块,共有9圈,则前9圈的石板总数是__________14.设有下列命题:①当,时,不等式恒成立;②函数在上的最小值为2;③函数在上的最大值为;④若,,且,则的最小值为其中真命题为________________.(填写所有真命题的序号)15.已知数列满足,若对任意恒成立,则实数的取值范围为________16.已知一个四面体的每个顶点都在表面积为的球的表面上,且,,则__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知两圆x2+y2-2x-6y-1=0.x2+y2-10x-12y+m=0(1)m取何值时两圆外切?(2)m取何值时两圆内切?(3)当m=45时,求两圆公共弦所在直线的方程和公共弦的长18.(12分)在平面直角坐标系中,点到两点的距离之和等于4,设点的轨迹为曲线(1)求曲线的方程;(2)设直线与交于两点,为何值时?19.(12分)中国男子篮球职业联赛(ChineseBasketballAssociation),简称中职篮(CBA),由中国国家体育总局篮球运动管理中心举办的男子职业篮球赛事,旨在全面提高中国篮球运动水平,其中诞生了姚明、王治郅、易建联、朱芳雨等球星.该比赛分为常规赛和季后赛.由于新冠疫情关系,某年联赛采用赛会制:所有球队集中在同一个地方比赛,分两个阶段进行,每个阶段采用循环赛,分主场比赛和客场比赛,积分排名前8球队进入季后赛.下表是A队在常规赛60场比赛中的比赛结果记录表.阶段比赛场数主场场数获胜场数主场获胜场数第一阶段30152010第二阶段30152515(1)根据表中数据,完成下面列联表:A队胜A队负合计主场5客场20合计60(2)根据(1)中列联表,判断是否有90%的把握认为比赛的“主客场”与“胜负”之间有关?附:.0.1000.0500.025k2.7063.8415.02420.(12分)已知椭圆的离心率为,且点在椭圆上(1)求椭圆的标准方程;(2)若过定点的直线交椭圆于不同的两点、(点在点、之间),且满足,求的取值范围.21.(12分)已知数列的通项公式为:,其中.记为数列的前项和(1)求,;(2)数列的通项公式为,求的前项和22.(10分)的内角A,B,C的对边分别为a,b,c.已知.(1)求B.(2)___________,若问题中的三角形存在,试求出;若问题中的三角形不存在,请说明理由.在①,②,③这三个条件中任选一个,补充在横线上.注:如果选择多个条件分别解答,按第一个解答计分.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出直线的斜率,由斜率得倾斜角【详解】由题意直线斜率为,所以倾斜角为故选:A2、C【解析】设出圆的标准方程,将已知点的坐标代入,解方程组即可.【详解】设圆的标准方程为,将坐标代入得:,解得,故圆的方程为,故选:C.3、B【解析】先由两条直线平行解出,再按照平行线之间距离公式求解.【详解】,则:,即,距离为.故选:B.4、A【解析】根据互斥事件的和的概率公式求解即可.【详解】由表知空气质量为优的概率是,由互斥事件的和的概率公式知,空气质量为良的概率为,所以该城市2017年空气质量达到良或优的概率,故选:A【点睛】本题主要考查了互斥事件,互斥事件和的概率公式,属于中档题.5、D【解析】将抛物线方程化标准形式后得到焦准距,可得结果.【详解】由得,所以,所以,所以抛物线的焦点坐标为.故选:D.【点睛】关键点点睛:将抛物线方程化为标准形式是解题关键.6、A【解析】设椭圆方程为,解方程组即得解.【详解】解:设椭圆方程为,由题意可知,椭圆的面积为,且、、均为正数,即,解得,因为椭圆的焦点在轴上,所以的标准方程为.故选:A.7、A【解析】根据题意先建立恰当的坐标系,可设出抛物线方程,利用已知条件得出点在抛物线上,代入方程求得p值,进而求得焦点到顶点的距离.【详解】如图所示,在接收天线的轴截面所在平面上建立平面直角坐标系xOy,使接收天线的顶点(即抛物线的顶点)与原点O重合,焦点F在x轴上设抛物线的标准方程为,由已知条件可得,点在抛物线上,所以,解得,因此,该抛物线的焦点到顶点的距离为1.35m,故选:A.8、C【解析】设出双曲线方程,根据题意,求得,即可选择.【详解】因为双曲线的一个焦点是,故可设双曲线方程为,且;又为一个顶点,故可得,解得,则双曲线方程为:.故选:.9、D【解析】根据椭圆方程先写出标准方程,然后根据标准方程写出便可得到离心率.【详解】解:由题意得:,,故选:D10、D【解析】直线的斜率为,计算,,利用余弦定理得到,化简知,得到答案【详解】由题意知直线的斜率为,,又,由双曲线定义知,,.由余弦定理:,,即,即,解得.故双曲线渐近线的方程为.故答案选D【点睛】本题考查了双曲线的渐近线,与圆的关系,意在考查学生的综合应用能力和计算能力.11、B【解析】先求出向量与的夹角的余弦值,即可求出与的夹角.【详解】,所以,∴,∴,∴,又∵,∴与的夹角为.故选:B.12、D【解析】先确定是等腰直角三角形,求出,再确定原图的形状,进而求出.【详解】由题意可知是等腰直角三角形,,其原图形是,,,,则,故选:D.二、填空题:本题共4小题,每小题5分,共20分。13、405【解析】前9圈的石板数依次组成一个首项为9,公差为9的等差数列,14、①③④【解析】①直接利用基本不等式判断即可;②直接利用基本不等式以及等号成立的条件判断即可;③分子、分母同除,利用基本不等式即可判断;④设,,利用指、对互化以及基本不等式即可判断.【详解】由于,,故恒成立,当且仅当时取等号,所以①正确;,当且仅当,即时取等号,由于,所以②不正确;因为,所以,当且仅当时取等号,而,即函数的最大值为,所以③正确;设,,则,,,,,所以,当且仅当,时取等号,故的最小值为,所以④正确.故答案为:①③④【点睛】易错点睛:利用基本不等式求最值时,要注意其必须满足的三个条件:(1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时,必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方.15、【解析】根据给定条件求出,构造新数列并借助单调性求解作答.【详解】在数列中,,当,时,,则有,而满足上式,因此,,,显然数列是递增数列,且,,又对任意恒成立,则,所以实数的取值范围为.故答案为:【点睛】思路点睛:给定数列的前项和或者前项积,求通项时,先要按和分段求,然后看时是否满足时的表达式,若不满足,就必须分段表达.16、【解析】由题意可得,该四面体的四个顶点位于一个长方体的四个顶点上,设长方体的长宽高为,由题意可得:,据此可得:,则球的表面积:,结合解得:.点睛:与球有关的组合体问题,一种是内切,一种是外接.解题时要认真分析图形,明确切点和接点的位置,确定有关元素间的数量关系,并作出合适的截面图,如球内切于正方体,切点为正方体各个面的中心,正方体的棱长等于球的直径;球外接于正方体,正方体的顶点均在球面上,正方体的体对角线长等于球的直径.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)(3)直线方程为4x+3y-23=0,弦长为【解析】(1)先把两个圆的方程化为标准形式,求出圆心和半径,再根据两圆的圆心距等于两圆的半径之和,求得m的值;(2)由两圆的圆心距等于两圆的半径之差为,求得m的值.(3)当m=45时,把两个圆的方程相减,可得公共弦所在的直线方程.求出第一个圆的圆心(1,3)到公共弦所在的直线的距离d,再利用弦长公式求得弦长试题解析:(1)由已知可得两个圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=61-m,两圆的圆心距d==5,两圆的半径之和为+,由两圆的半径之和为+=5,可得m=(2)由两圆的圆心距d=="5"等于两圆的半径之差为|-|,即|-|=5,可得-="5"(舍去),或-=-5,解得m=(3)当m=45时,两圆的方程分别为(x-1)2+(y-3)2=11、(x-5)2+(y-6)2=16,把两个圆的方程相减,可得公共弦所在的直线方程为4x+3y-23=0第一个圆的圆心(1,3)到公共弦所在的直线的距离为d==2,可得弦长为考点:1.两圆相切的位置关系;2.两圆相交的公共弦问题18、(1);(2).【解析】(1)由题意可得:点的轨迹为椭圆,设标准方程为:,则,,,解出可得椭圆的标准方程(2)设,,直线方程与椭圆联立,化为:,恒成立,由,可得,把根与系数的关系代入解得【详解】解:(1)由题意可得:点的轨迹为椭圆,设标准方程为:,则,,,可得椭圆的标准方程为:(2)设,,联立,化为:,恒成立,,,,,,解得.满足当时,能使【点睛】本题考查了椭圆的标准方程及其性质、直线与椭圆相交弦长问题、数量积运算性质、一元二次方程的根与系数的关系,考查了推理能力与计算能力,属于难题19、(1)填表见解析(2)没有【解析】(1)由A队在常规赛60场比赛中的比赛结果记录表可得答案;(2)根据(1)中的列联表,代入可得答案.【小问1详解】(1)根据表格信息得到列联表:A队胜A队负合计主场25530客场201030合计451560【小问2详解】所以没有90%的把握认为比赛的“主客场”与“胜负”之间有关.20、(1)(2)【解析】(1)代入点坐标,结合离心率,以及即得解;(2)设直线方程,与椭圆联立,转化为,结合韦达定理和判别式,分析即得解【小问1详解】由题意可知:,解得:椭圆的标准方程为:【小问2详解】①当直线斜率不存在,方程为,则,.②当直线斜率存在时,设直线方程为,联立得:.由得:.设,,则,,又,,,则,,所以,所以,解得:,又,综上所述:的取值范围为.21、(1);;(2).【解析】(1)验证可知数列是以为周期的周期数列,则,;(2)由(1)可求得,利用错位相减法可求得结果.【小问1详解】当时,;当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 荆州理工职业学院《中医养生康复学》2023-2024学年第二学期期末试卷
- 山东省临沂市莒南县市级名校2024-2025学年初三模拟考试(二)英语试题试卷含答案
- 南宁学院《书法艺术》2023-2024学年第一学期期末试卷
- 江苏农牧科技职业学院《中医典籍导读》2023-2024学年第一学期期末试卷
- 2025年图书馆信息学专业考试试题及答案
- 2025年营销专员职业能力考试试题及答案
- 2025年数字媒体艺术专业入学考试试卷及答案
- 四川传媒学院《景观设计方法Ⅰ》2023-2024学年第二学期期末试卷
- 内蒙古科技大学《资源加工工程设计》2023-2024学年第一学期期末试卷
- 天津海运职业学院《英语新闻选读》2023-2024学年第一学期期末试卷
- 物流行业综合工时优化方案
- 宫颈癌护理查房-5
- 2023年上海铁路局集团有限公司招聘考试真题
- 中国高血压防治指南(2024年修订版)要点解读
- 轴类零件加工工艺设计-毕业设计论文
- 2024年山东济宁初中学业水平考试地理试卷真题(含答案详解)
- 2024年计算机考试-ISTQB认证考试近5年真题附答案
- 设备、材料供应方案
- 电波流速仪测流规程DB41-T 2229-2022
- 2024年中国办公信创场景实践研究报告
- DB43-T 3008-2024 三维地理信息模型数据产品质量检查与验收技术规范
评论
0/150
提交评论