




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页河北省鸡泽县2024-2025学年数学九上开学经典试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)菱形与矩形都具有的性质是().A.对角相等 B.四边相等 C.对角线互相垂直 D.四角相等2、(4分)如图,菱形ABCD的对角线AC、BD交于点O,E、F分别是AD、CD边的中点,连接EF,若,,则菱形ABCD的面积是A.24 B.20 C.12 D.63、(4分)如图,长为8cm的橡皮筋放置在x轴上,固定两端A和B,然后把中点C向上拉升3cm至D点,则橡皮筋被拉长了()A.2cm B.3cm C.4cm D.5cm4、(4分)能判定四边形ABCD是平行四边形的是()A.AD//BC,AB=CD B.∠A=∠B,∠C=∠DC.∠A=∠C,∠B=∠D D.AB=AD,CB=CD5、(4分)下列判断错误的是()A.两组对边分别相等的四边形是平行四边形B.四个内角都相等的四边形是矩形C.四条边都相等的四边形是菱形D.两条对角线垂直且平分的四边形是正方形6、(4分)如图所示,梯子AB靠在墙上,梯子的底端A到墙根O的距离为2m,梯子顶端B到地面距离为7m,现将梯子的底端A向外移动到A′,使梯子的底端A′到墙根O的距离等于4m,同时梯子的顶端B下降至B′,那么BB′的长为()A.等于1m B.大于1m C.小于1m D.以上答案都不对7、(4分)对于方程:,下列判断正确的是()A.只有一个实数根 B.有两个不同的实数根C.有两个相同的实数根 D.没有实数根8、(4分)若分式的值为0,则的值是()A. B. C.0 D.3二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)在一列数2,3,3,5,7中,他们的平均数为__________.10、(4分)若a+b=4,a﹣b=1,则(a+2)2﹣(b﹣2)2的值为_____.11、(4分)弹簧原长(不挂重物)15cm,弹簧总长L(cm)与重物质量x(kg)的关系如下表所示:弹簧总长L(cm)1617181920重物质量x(kg)0.51.01.52.02.5当重物质量为4kg(在弹性限度内)时,弹簧的总长L(cm)是_________.12、(4分)如图,在中,,,的面积为8,则四边形的面积为______.13、(4分)如图,在等腰直角三角形ACD,∠ACD=90°,AC=,分别以边AD,AC,CD为直径面半图,所得两个月形图案AGCE和DHCF的面积之和(图中阴影部分)为_____________.三、解答题(本大题共5个小题,共48分)14、(12分)计算:(1)(2)()()15、(8分)如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.(1)求证:OP=OQ;(2)若AD=8厘米,AB=6厘米,P从点A出发,以1厘米/秒的速度向D运动(不与D重合).设点P运动时间为t秒,请用t表示PD的长;并求t为何值时,四边形PBQD是菱形.16、(8分)如图,△ABC中,∠ACB的平分线交AB于点D,作CD的垂直平分线,分别交AC、DC、BC于点E、G、F,连接DE、DF.(1)求证:四边形DFCE是菱形;(2)若∠ABC=60,∠ACB=45°,BD=2,试求BF的长.17、(10分)甲、乙两名自行车爱好者准备在段长为3500米的笔直公路上进行比赛,比赛开始时乙在起点,甲在乙的前面.他们同时出发,匀速前进,已知甲的速度为12米/秒,设甲、乙两人之间的距离为s(米),比赛时间为t(秒),图中的折线表示从两人出发至其中一人先到达终点的过程中s(米)与t(秒)的函数关系根据图中信息,回答下列问题:(1)乙的速度为多少米/秒;(2)当乙追上甲时,求乙距起点多少米;(3)求线段BC所在直线的函数关系式.18、(10分)已知,直线与双曲线交于点,点.(1)求反比例函数的表达式;(2)根据图象直接写出不等式的解集.(3)将直线沿轴向下平移后,分别与轴,轴交于点,点,当四边形为平行四边形时,求直线的表达式.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)当x______时,在实数范围内有意义.20、(4分)己知一个菱形的边长为2,较长的对角线长为2,则这个菱形的面积是_____.21、(4分)如图,平行四边形ABCD中,∠B=60°,AB=8cm,AD=10cm,点P在边BC上从B向C运动,点Q在边DA上从D向A运动,如果P,Q运动的速度都为每秒1cm,那么当运动时间t=_____秒时,四边形ABPQ是直角梯形.22、(4分)将点向右平移4个单位,再向下平移3个单位,则平移后点的坐标是__________.23、(4分)如图,矩形ABCD中,AB=6,BC=8,点E是BC边上一点,连接AE,把∠B沿AE折叠,使点B落在点B′处,当△CEB′为直角三角形时,BE的长为_____.二、解答题(本大题共3个小题,共30分)24、(8分)《北京中小学语文学科教学21条改进意见》中的第三条指出:“在教学中重视对国学经典文化的学习,重视历史文化的熏陶,加强与革命传统教育的结合,使学生了解中华文化的悠久历史,增强民族文化自信和价值观自信,使语文教学成为涵养社会主义核心价值观的重要源泉之一”.为此,昌平区掀起了以“阅读经典作品,提升思维品质”为主题的读书活动热潮,在一个月的活动中随机调查了某校初二年级学生的周人均阅读时间的情况,整理并绘制了如下的统计图表:某校初二年级学生周人均阅读时间频数分布表周人均阅读时间x(小时)频数频率0≤x<2100.0252≤x<4600.1504≤x<6a0.2006≤x<81100.2758≤x<101000.25010≤x<1240b合计4001.000请根据以上信息,解答下列问题:(1)在频数分布表中a=______,b=______;(2)补全频数分布直方图;(3)若该校有1600名学生,根据调查数据请你估计,该校学生周人均阅读时间不少于6小时的学生大约有______人.25、(10分)解不等式组,并把解集表示在数轴上,再找出它的整数解.26、(12分)如图,四边形和都是平行四边形.求证:四边形是平行四边形.
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、A【解析】
根据矩形、菱形的性质分别判断即可解决问题.【详解】A.对角相等,菱形和矩形都具有的性质,故A正确;B.四边相等,菱形的性质,矩形不具有的性质,故B错误;C.对角线互相垂直,矩形不具有的性质,故C错误;D.四角相等,矩形的性质,菱形不具有的性质,故D错误;故选:A.此题考查菱形的性质,矩形的性质,解题关键在于掌握各性质定义.2、A【解析】
根据EF是的中位线,根据三角形中位线定理求的AC的长,然后根据菱形的面积公式求解.【详解】解:、F分别是AD,CD边上的中点,即EF是的中位线,,则.故选:A.本题考查了三角形的中位线定理和菱形的面积公式,理解中位线定理求的AC的长是关键.3、A【解析】
根据勾股定理可以得到AD和BD的长度,然后用AD+BD-AB的长度即为所求.【详解】根据题意可得BC=4cm,CD=3cm,根据Rt△BCD的勾股定理可得BD=5cm,则AD=BD=5cm,所以橡皮筋被拉长了(5+5)-8=2cm.主要考查了勾股定理解直角三角形.4、C【解析】
根据平行四边形的判定定理依次确定即可.【详解】A.AD//BC,AB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;B.∠A=∠B,∠C=∠D,不能判定四边形ABCD是平行四边形,故不符合题意;C.∠A=∠C,∠B=∠D,能判定四边形ABCD是平行四边形,故符合题意;D.AB=AD,CB=CD,不能判定四边形ABCD是平行四边形,故不符合题意;故选:C.此题考查平行四边形的判定定理,熟记定理内容即可正确解答.5、D【解析】
分别利用平行四边形、矩形、菱形和正方形的判定定理,对选项逐一分析即可做出判断.【详解】解:A、两组对边分别相等的四边形是平行四边形,符合平行四边形的判定,故本选项正确,不符合题意;B、∵四边形的内角和为360°,四边形的四个内角都相等,∴四边形的每个内角都等于90°,则这个四边形有三个角是90°,∴这个四边形是矩形,故四个内角都相等的四边形是矩形,本选项正确,不符合题意;C、四条边都相等的四边形是菱形,符合菱形的判定,,故本选项正确,不符合题意;D、两条对角线垂直且平分的四边形是菱形,不一定是正方形,故本选项错误,符合题意;故选:D.本题考查了平行四边形、矩形、菱形和正方形的判定定理,解题的关键是正确理解并掌握判定定理.6、C【解析】
由题意可知OA=2,OB=7,先利用勾股定理求出AB,梯子移动过程中长短不变,所以AB=A′B′,又由题意可知OA′=3,利用勾股定理分别求OB′长,把其相减得解.【详解】在直角三角形AOB中,∵OA=2,OB=7∴AB=(m),由题意可知AB=A′B′=(m),又∵OA′=4,根据勾股定理得:OB′=(m),∴BB′=7﹣<1.故选C.本题考查了勾股定理的应用,属于基础题,解答本题的关键是掌握勾股定理的表达式.7、B【解析】
原方程变形后求出△=b2-4ac的值,然后根据计算结果判断方程根的情况.【详解】∵x(x+1)=0,∴x2+x=0,∵a=1,b=1,c=0,∴△=b2-4ac=1-0=1>0∴方程有两个不相等的实数根.故选B.本题考查了一元二次方程ax2+bx+c=0(a≠0,a,b,c为常数)的根的判别式△=b2-4ac.当△>0时,方程有两个不相等的实数根;当△=0时,方程有两个相等的实数根;当△<0时,方程没有实数根.8、D【解析】
根据分式为零的条件,即可完成解答.【详解】解:由分式为零的条件得,x-3=0,x+2≠0,解得x=3;故答案为D.本题考查了分式为0的条件,即分子为零,分母不为0.二、填空题(本大题共5个小题,每小题4分,共20分)9、1【解析】
直接利用算术平均数的定义列式计算可得.【详解】解:这组数据的平均数为=1,故答案为:1.本题主要考查算术平均数,解题的关键是掌握算术平均数的定义.10、1【解析】
先利用平方差公式:化简所求式子,再将已知式子的值代入求解即可.【详解】将代入得:原式故答案为:1.本题考查了利用平方差公式进行化简求值,熟记公式是解题关键.另一个重要公式是完全平方公式:,这是常考知识点,需重点掌握.11、1【解析】
根据表格数据,建立数学模型,进而利用待定系数法可得函数关系式,当x=4时,代入函数解析式求值即可.【详解】解:设弹簧总长L(cm)与重物质量x(kg)的关系式为L=kx+b,
将(0.5,16)、(1.0,17)代入,得:,
解得:,
∴L与x之间的函数关系式为:L=2x+15;
当x=4时,L=2×4+15=1(cm)
故重物为4kg时弹簧总长L是1cm,
故答案为1.吧本题考查根据实际问题列一次函数关系式,解题的关键是得到弹簧长度的关系式.12、2【解析】
根据相似三角形的判定与性质,可得△ABC的面积,根据面积的和差,可得答案.【详解】解:∵DE∥BC,,
∴△ADE∽△ABC,,
∴=()2=,
∵△ADE的面积为8,
∴S△ABC=1.
S四边形DBCE=S△ABC-S△ADE=1-8=2,
故答案为:2.本题考查相似三角形的判定与性质,利用相似三角形面积的比等于相似比的平方得出S△ABC=1是解题关键.13、1【解析】
由勾股定理可得AC2+CD2=AD2,然后确定出S半圆ACD=S半圆AEC+S半圆CFD,从而得证.【详解】解:∵△ACD是直角三角形,
∴AC2+CD2=AD2,
∵以等腰Rt△ACD的边AD、AC、CD为直径画半圆,
∴S半圆ACD=π•AD2,S半圆AEC=π•AC2,S半圆CFD=π•CD2,
∴S半圆ACD=S半圆AEC+S半圆CFD,
∴所得两个月型图案AGCE和DHCF的面积之和(图中阴影部分)=Rt△ACD的面积=××=1;
故答案为1.本题考查了勾股定理,等腰直角三角形的性质,掌握定理是解题的关键.三、解答题(本大题共5个小题,共48分)14、(1);(2)【解析】
(1)直接化简二次根式进而计算得出答案;
(2)直接利用二次根式的乘法运算法则计算得出答案.【详解】(1)原式.(2)原式.此题主要考查了二次根式的混合运算,正确化简二次根式是解题关键.15、(1)证明见解析(2)74【解析】试题分析:(1)先根据四边形ABCD是矩形,得出AD∥BC,∠PDO=∠QBO,再根据O为BD的中点得出△POD≌△QOB,即可证得OP=OQ;(2)根据已知条件得出∠A的度数,再根据AD=8cm,AB=6cm,得出BD和OD的长,再根据四边形PBQD是菱形时,利用勾股定理即可求出t的值,判断出四边形PBQD是菱形.试题解析:(1)证明:因为四边形ABCD是矩形,所以AD∥BC,所以∠PDO=∠QBO,又因为O为BD的中点,所以OB=OD,在△POD与△QOB中,∠PDO=∠QBO,OB=OD,∠POD=∠QOB,所以△POD≌△QOB,所以OP=OQ.(2)解:PD=8-t,因为四边形PBQD是菱形,所以PD=BP=8-t,因为四边形ABCD是矩形,所以∠A=90°,在Rt△ABP中,由勾股定理得:AB即62解得:t=74即运动时间为74考点:矩形的性质;菱形的性质;全等三角形的判断和性质勾股定理.16、(1)证明见解析;(2)1+【解析】试题分析:(1)已知EF是DC的垂直平分线,可得DE=EC,DF=CF,∠EGC=∠FGC=90°,再由ASA证得△CGE≌△FCG,根据全等三角形的性质可得GE=GF,所以DE=EC=DF=CF,根据四条边都相等的四边形为菱形,即可判定四边形DFCE是菱形;(2)过D作DH⊥BC于H,根据30°直角三角形的性质求得BH=1;在Rt△DHB中,根据勾股定理求得DH的长,再判定△DHF是等腰直角三角形,即可得DH=FH=,即可求得BF的长.试题解析:(1)证明:∵EF是DC的垂直平分线,∴DE=EC,DF=CF,∠EGC=∠FGC=90°,∵CD平分∠ACB,∴∠ECG=∠FCG,∵CG=CG,∴△CGE≌△FCG(ASA),∴GE=GF,∴DE=EC=DF=CF,∴四边形DFCE是菱形;(2)过D作DH⊥BC于H,则∠DHF=∠DHB=90°,∵∠ABC=60°,∴∠BDH=30°,∴BH=BD=1,在Rt△DHB中,DH==,∵四边形DFCE是菱形,∴DF∥AC,∴∠DFB=∠ACB=45°,∴△DHF是等腰直角三角形,∴DH=FH=,∴BF=BH+FH=1+.17、(1)14;(2)乙距起点2100米;(3)BC所在直线的函数关系式为s=2t-300.【解析】
(1)设乙的速度为x米/秒,根据图象得到300+150×12=150x,解方程即可;(2)由图象可知乙用了150秒追上甲,用时间乘以速度即可;(3)先计算出乙完成全程所需要的时间为=250(秒),则乙追上甲后又用了250−150=100秒到达终点,所以这100秒他们相距100×(14−12)米,可得到C点坐标,而B点坐标为(150,0),然后利用待定系数法求线段BC所在直线的函数关系式即可.【详解】解:(1)设乙的速度为x米/秒,则300+150×12=150x,解得x=14,故答案为:14.(2)由图象可知乙用了150秒追上甲,14×150=2100(米).∴当乙追上甲吋,乙距起点2100米.(3)乙从出发到终点的时间为=250(秒),此时甲、乙的距离为:(250-150)(14-12)=200(米),∴C点坐标为(250,200),B点坐标为(150,0)设BC所在直线的函数关系式为s=kt+b(k0,k,b为常数),将B、C两点代入,得,解得∴BC所在直线的函数关系式为s=2t-300.本题考查了一次函数的应用及待定系数法求一次函数的解析式:先设一次函数的解析式为y=kx+b(k≠0),然后把一次函数图象上的两点的坐标分别代入,得到关于k、b的方程组,解方程组求出k、b的值,从而确定一次函数的解析式.也考查了从函数图象获取信息的能力.18、(1);(2)或;(3),【解析】
(1)将点A代入直线解析式即可得出其坐标,再代入反比例函数解析式,即可得解;(2)首先联立两个函数,解得即可得出点B坐标,直接观察图像,即可得出解集;(3)首先过点作轴,过点作轴,交于点,根据平行线的性质,得出,得出,进而得出直线CD解析式.【详解】解:(1)根据题意,可得点将其代入反比例函数解析式,即得(2)根据题意,得解得∴点B(4,-2)∴直接观察图像,可得的解集为或(3)过点作轴,过点作轴,交于点根据题意,可得∴∠EAB=∠NOB=∠OCD,∠AEB=∠COD=90°,AB=CD∴∠ABE=∠CDO∴(ASA)∴则可得出直线CD为此题主要考查一次函数、反比例函数和平行四边形的综合应用,熟练运用,即可解题.一、填空题(本大题共5个小题,每小题4分,共20分)19、x≥-1且x≠1.【解析】
根据二次根式的性质和分式的意义,被开方数大于等于0,分母不等于0,列不等式求解.【详解】解:根据二次根式的意义,被开方数x+1≥0,解得x≥-1;
根据分式有意义的条件,x-1≠0,解得x≠1,
所以,x取值范围是x≥-1且x≠1故答案为:x≥-1且x≠1.本题考查二次根式有意义的条件和分式有意义的条件,掌握二次根式中的被开方数必须是非负数、分式分母不为0是解题的关键.20、【解析】分析:根据菱形的性质结合勾股定理可求出较短的对角线的长,再根据菱形的面积公式即可求出该菱形的面积.详解:依照题意画出图形,如图所示.在Rt△AOB中,AB=2,OB=,∴OA==1,∴AC=2OA=2,∴S菱形ABCD=AC•BD=×2×2=2.故答案为2.点睛:本题考查了菱形的性质以及勾股定理,根据菱形的性质结合勾股定理求出较短的对角线的长是解题的关键.21、1【解析】
过点A作AE⊥BC于E,因为AD∥BC,所以当AE∥QP时,则四边形ABPQ是直角梯形,利用已知条件和路程与速度的关系式即可求出时间t的值【详解】解:∵四边形ABCD是平行四边形,∴AD∥BC,过点A作AE⊥BC于E,∴当AE∥QP时,则四边形ABPQ是直角梯形,∵∠B=60°,AB=8cm,∴BE=4cm,∵P,Q运动的速度都为每秒1cm,∴AQ=10﹣t,AP=t,∵BE=4,∴EP=t﹣4,∵AE⊥BC,AQ∥EP,AE∥QP,∴QP⊥BC,AQ⊥AD,∴四边形AEPQ是矩形,∴AQ=EP,即10﹣t=t﹣4,解得t=1,故答案为:1.此题考查直角梯形,平行四边形的性质,解题关键在于作辅助线22、(3,-1)【解析】
直接利用平移中点的变化规律:横坐标右移加,左移减;纵坐标上移加,下移减,据此可得.【详解】将点A(-1,2)向右平移4个单位长度,再向下平移3个单位长度,
则平移后点的坐标是(-1+4,2-3),即(3,-1),
故答案为:(3,-1).此题考查坐标与图形变化-平移,解题关键在于掌握左右移动改变点的横坐标,左减,右加;上下移动改变点的纵坐标,下减,上加.23、3或1.【解析】
当为直角三角形时,有两种情况:①当点落在矩形内部时,如答图1所示.连结,先利用勾股定理计算出,根据折叠的性质得,而当为直角三角形时,只能得到,所以点、、共线,即沿折叠,使点落在对角线上的点处,则,,可计算出,设,则,,然后在中运用勾股定理可计算出.②当点落在边上时,如答图2所示.此时四边形为正方形.【详解】解:当为直角三角形时,有两种情况:①当点落在
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 山东省临沂市2025年普通高等学校招生全国统一考试(模拟)地理及答案(临沂二模)
- 买卖物品合同范例
- 公司之间融资合同范例
- shangye房租赁合同范例
- 书代理合同范例
- 光缆熔纤合同范例
- 个人雇短工合同范例
- 产业投资合同范例
- 全施工合同范例
- 临时购房合同范例
- 铁路基础知识-课件
- EAP服务案例解析
- 产品思维到用户思维
- 华为成本控制 论文
- “九小”场所、沿街门店安全排查表
- 仿生原理与创新设计课件
- 【自考练习题】大连理工大学概率论与数理统计真题汇总(附答案解析)
- 小儿吸痰法讲稿
- xx学校研学旅行活动告家长书
- (格式已排好)国家开放大学电大《计算机应用基础(专)》终结性考试大作业答案任务一
- 中秋节英文PPT
评论
0/150
提交评论