江西省南昌市第一中学2025届高二上数学期末学业质量监测试题含解析_第1页
江西省南昌市第一中学2025届高二上数学期末学业质量监测试题含解析_第2页
江西省南昌市第一中学2025届高二上数学期末学业质量监测试题含解析_第3页
江西省南昌市第一中学2025届高二上数学期末学业质量监测试题含解析_第4页
江西省南昌市第一中学2025届高二上数学期末学业质量监测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

江西省南昌市第一中学2025届高二上数学期末学业质量监测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.数学家欧拉1765年在其所著的《三角形几何学》一书中提出:任意三角形的外心、重心、垂心在同一条直线上,后人称这条直线为欧拉线.已知△ABC的顶点分别为,,,则△ABC的欧拉线方程为()A. B.C. D.2.设函数是奇函数的导函数,,当时,,则使得成立的的取值范围是A. B.C D.3.如图,从气球A上测得正前方的河流的两岸B,C的俯角分别为、,其中,.如果这时气球的高度,则河流的宽度BC为()A. B.C. D.4.在中,,,且BC边上的高为,则满足条件的的个数为()A.3 B.2C.1 D.05.“”是“圆与轴相切”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.若等比数列满足,,则数列的公比为()A. B.C. D.7.已知A,B,C是椭圆M:上三点,且A(A在第一象限,B关于原点对称,,过A作x轴的垂线交椭圆M于点D,交BC于点E,若直线AC与BC的斜率之积为,则()A.椭圆M的离心率为 B.椭圆M的离心率为C. D.8.一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,另两名员工数据不清楚,那么8位员工月工资的中位数不可能是()A.5800 B.6000C.6200 D.64009.已知数列是以1为首项,2为公差的等差数列,是以1为首项,2为公比的等比数列,设,,则当时,n的最大值是()A.8 B.9C.10 D.1110.等比数列的公比,中有连续四项在集合中,则等于()A. B.C D.11.“”是“直线与直线垂直”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件12.直线过椭圆内一点,若点为弦的中点,设为直线的斜率,为直线的斜率,则的值为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知集合,集合,则__________.14.从某校随机抽取某次数学考试100分以上(含100分,满分150分)的学生成绩,将他们的分数数据绘制成如图所示频率分布直方图.若共抽取了100名学生的成绩,则分数在内的人数为___________15.抛物线上的点到其焦点的最短距离为_________.16.同时掷两枚骰子,则点数和为7的概率是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图所示,四棱锥的底面为矩形,,,过底面对角线作与平行的平面交于点(1)求二面角的余弦值;(2)求与所成角的余弦值;(3)求与平面所成角的正弦值18.(12分)浙江省新高考采用“3+3”模式,其中语文、数学、外语三科为必考科目,另外考生根据自己实际需要在政治、历史、地理、物理、化学、生物、技术7门科目中自选3门参加考试.下面是某校高一200名学生在一次检测中的物理、化学、生物三科总分成绩,以组距20分成7组:[160,180),[180,200),[200,220),[220,240),[240,260),[260,280),[280,300],画出频率分布直方图如下图所示(1)求频率分布直方图中的值;(2)由频率分布直方图,求物理、化学、生物三科总分成绩的第60百分位数;(3)若小明决定从“物理、化学、生物、政治、技术”五门学科中选择三门作为自己的选考科目,求小明选中“技术”的概率19.(12分)已知抛物线的顶点在原点,焦点在轴上,且抛物线上有一点到焦点的距离为3,直线与抛物线交于,两点,为坐标原点(1)求抛物线的方程;(2)求的面积.20.(12分)已知定点,圆:,点Q为圆上动点,线段MQ的垂直平分线交NQ于点P,记P的轨迹为曲线C(1)求曲线C的方程;(2)过点M与N作平行直线和,分别交曲线C于点A,B和点D,E,求四边形ABDE面积的最大值21.(12分)已知数列满足,.(1)求数列的通项公式;(2)记,其中表示不超过最大整数,如,.(i)求、、;(ii)求数列的前项的和.22.(10分)在2016珠海航展志愿服务开始前,团珠海市委调查了北京师范大学珠海分校某班50名志愿者参加志愿服务礼仪培训和赛会应急救援培训的情况,数据如下表:单位:人参加志愿服务礼仪培训未参加志愿服务礼仪培训参加赛会应急救援培训88未参加赛会应急救援培训430(1)从该班随机选1名同学,求该同学至少参加上述一个培训的概率;(2)在既参加志愿服务礼仪培训又参加赛会应急救援培训的8名同学中,有5名男同学A,A,A,A,A名女同学B,B,B现从这5名男同学和3名女同学中各随机选1人,求A被选中且B未被选中的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】求出重心坐标,求出AB边上高和AC边上高所在直线方程,联立两直线可得垂心坐标,即可求出欧拉线方程.【详解】由题可知,△ABC的重心为,可得直线AB的斜率为,则AB边上高所在的直线斜率为,则方程为,直线AC的斜率为,则AC边上高所在的直线斜率为2,则方程为,联立方程可得△ABC的垂心为,则直线GH斜率为,则可得直线GH方程为,故△ABC的欧拉线方程为.故选:A.2、B【解析】构造函数,可知函数为奇函数,利用导数分析出函数在上的单调性,并得出,然后分别在和解不等式,由此可得出不等式的解集.【详解】构造函数,该函数的定义域为,由于函数为上的奇函数,则,所以,函数为上的奇函数,且,,.当时,,此时,函数单调递增,由,可得,解得;当时,则函数单调递增,由,可得,解得.综上所述,使得成立的的取值范围是.故选:B.【点睛】本题考查利用函数的单调性求解函数不等式,根据导数不等式的结构构造合适的函数是解题的关键,考查分析问题和解决问题的能力,属于中等题.3、D【解析】由题意得,,,然后在和求出,从而可求出的值【详解】如图,由题意得,,,在中,,在中,,所以,故选:D4、B【解析】利用等面积法求得,再利用正弦定理求得,利用内角和的关系及两角和差化积公式,二倍角公式转化为,再利用正弦函数的性质求满足条的的个数,即可求解.【详解】由三角形的面积公式知,即由正弦定理知所以,即,即,即利用两角和的正弦公式结合二倍角公式化简得又,则,,且由正弦函数的性质可知,满足的有2个,即满足条件的的个数为2.故选:B5、A【解析】根据充分不必要条件的定义和圆心到轴的距离求出可得答案.【详解】时,圆的圆心坐标为,半径为2,此时圆与轴相切;当圆与轴相切时,因为圆的半径为2,所以圆心到轴的距离为,所以,“”是“圆与轴相切”的充分不必要条件故选:A6、D【解析】设等比数列的公比为,然后由已知条件列方程组求解即可【详解】设等比数列的公比为,因为,,所以,所以,解得,故选:D7、C【解析】设出点,,的坐标,将点,分别代入椭圆方程两式作差,构造直线和的斜率之积,得到,即可求椭圆的离心率,利用,求出,可知点在轴上,且为的中点,则.【详解】设,,,则,,,两式相减并化简得,即,则,则AB错误;∵,,∴,又∵,∴,即,解得,则点在轴上,且为的中点即,则正确.故选:C.8、D【解析】解:∵一个公司有8名员工,其中6名员工的月工资分别为5200,5300,5500,6100,6500,6600,∴当另外两名员工的工资都小于5300时,中位数为(5300+5500)÷2=5400,当另外两名员工的工资都大于5300时,中位数为(6100+6500)÷2=6300,∴8位员工月工资的中位数的取值区间为[5400,6300],∴8位员工月工资的中位数不可能是6400.本题选择D选项.9、B【解析】先求出数列和的通项公式,然后利用分组求和求出,再对进行赋值即可求解.【详解】解:因为数列是以1为首项,2为公差的等差数列所以因为是以1为首项,2为公比的等比数列所以由得:当时,即当时,当时,所以n的最大值是.故选:B.【点睛】关键点睛:本题的关键是利用分组求和求出,再通过赋值法即可求出使不等式成立的的最大值.10、C【解析】经分析可得,等比数列各项的绝对值单调递增,将五个数按绝对值的大小排列,计算相邻两项的比值,根据等比数列的定义即可求解.【详解】因为等比数列中有连续四项在集合中,所以中既有正数项也有负数项,所以公比,因为,所以,且负数项为相隔两项,所以等比数列各项的绝对值单调递增,按绝对值排列可得,因,,,,所以是中连续四项,所以,故选:C.11、A【解析】求出两直线垂直的充要条件后再根据充分必要条件的定义判断.【详解】由,得,即或所以,反之,则不然所以“”是“直线与直线垂直”的充分不必要条件.故选:A12、A【解析】设点与的坐标,进而可表示与,再结合两点在椭圆上,可得的值.【详解】设点与,则,,所以,,又点与在椭圆上,所以,,作差可得,即,所以,故选:A.二、填空题:本题共4小题,每小题5分,共20分。13、##(-1,2]【解析】根据两集合的并集的含义,即可得答案.【详解】因为集合,集合,所以,故答案为:14、30【解析】根据频率分布直方图中所以小矩形面积和为1,可得a值,根据总人数和频率,即可得答案.【详解】因为频率分布直方图中所以小矩形面积和为1,所以,解得,所以分数在内的人数为.故答案为:3015、1【解析】设出抛物线上点的坐标,利用两点间距离公式建立函数关系,借助函数性质计算作答.【详解】抛物线的焦点,设点为抛物线上任意一点,于是有,当且仅当时取“=”,所以当,即点P为抛物线顶点时,取最小值1.故答案为:116、【解析】利用古典概型的概率计算公式即得.【详解】依题意,记抛掷两颗骰子向上的点数分别为,,则可得到数组共有组,其中满足的组数共有6组,分别为,,,,,,因此所求的概率等于.故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3).【解析】(1)设,连接、,证明出平面,推导出为的中点,然后以点为坐标原点,、、的方向分别为、、轴的正方向建立空间直角坐标系,利用空间向量法可求得二面角的余弦值;(2)利用空间向量法可求得与所成角的余弦值;(3)利用空间向量法可求得与平面所成角的正弦值.【小问1详解】解:设,则为、的中点,连接、,因为平面,平面,平面平面,则,因为为的中点,则为的中点,因为,为的中点,则,同理可证,,平面,,,则,,以点为坐标原点,、、的方向分别为、、轴的正方向建立如下图所示的空间直角坐标系,则、、、、、,设平面的法向量为,,,由,取,可得,易知平面的一个法向量为,.由图可知,二面角的平面角为锐角,因此,二面角的余弦值为.【小问2详解】解:,,,因此,与所成角的余弦值为.【小问3详解】解:,,因此,与平面所成角的正弦值为.18、(1)=0.005(2)232(3)【解析】(1)由频率和为1列方程求解即可,(2)由于前3组的频率和小于0.6,前4组的频率和大于0.6,所以三科总分成绩的第60百分位数在第4组内,设第60百分位数为,则0.45+0.0125×(−220)=0.6,从而可求得结果,(3)利用列举法求解即可【小问1详解】由(0.002+0.0095+0.011+0.0125+0.0075++0.0025)×20=1,解得=0.005【小问2详解】因为(0.002+0.0095+0.011)×20=0.45<0.6,(0.002+0.0095+0.011+0.0125)×20=0.7>0.6,所以三科总分成绩的第60百分位数在[220,240)内,设第60百分位数为,则0.45+0.0125×(−220)=0.6,解得=232,即第60百分位数为232【小问3详解】将物理、化学、生物、政治、技术5门学科分别记作.则事件A表示小明选中“技术”,则,所以P(A)=19、(1);(2)【解析】(1)由题意可设抛物线的方程为y2=2px(p>0),运用抛物线的定义,可得23,解得p=2,进而得到抛物线的方程;(2)由题意,直线AB方程为y=x﹣1,与y2=4x消去y得:x2﹣6x+1=0.再用一元二次方程根与系数的关系和弦长公式,算出|AB|;利用点到直线的距离公式算出点O到直线AB的距离,即可求出△AOB的面积【详解】(1)抛物线C的顶点在原点,焦点在x轴上,且过一点P(2,m),可设抛物线的方程为y2=2px(p>0),P(2,m)到焦点的距离为3,即有P到准线的距离为6,即23,解得p=2,即抛物线的标准方程为y2=4x;(2)联立方程化简,得x2﹣6x+1=0设交点为A(x1,y1),B(x2,y2)∴x1+x2=6,x1x2=1可得|AB||x1﹣x2|=8点O到直线l的距离d,所以△AOB的面积为S|AB|•d82【点睛】本题考查抛物线的方程的求法及抛物线定义的应用,考查待定系数法的运用,考查求焦点弦AB与原点构成的△AOB面积,属于中档题20、(1)(2)6【解析】(1)由椭圆的定义求解(2)设直线方程后与椭圆方程联立,由韦达定理表示弦长,将面积转化为函数后求求解【小问1详解】由题意可得,所以动点P的轨迹是以M,N为焦点,长轴长为4的椭圆,即曲线C的方程为:;【小问2详解】由题意可设的方程为,联立方程得,设,,则由根与系数关系有,所以,根据椭圆的对称性可得,与的距离即为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论