2025届天津市第100中学高一上数学期末考试试题含解析_第1页
2025届天津市第100中学高一上数学期末考试试题含解析_第2页
2025届天津市第100中学高一上数学期末考试试题含解析_第3页
2025届天津市第100中学高一上数学期末考试试题含解析_第4页
2025届天津市第100中学高一上数学期末考试试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届天津市第100中学高一上数学期末考试试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.已知不等式的解集为,则不等式的解集是()A. B.C.或 D.或2.方程的解所在的区间为()A. B.C. D.3.已知函数(其中)的图象如图所示,则函数的图像是()A. B.C. D.4.函数在上的最小值为,最大值为2,则的最大值为()A. B.C. D.25.“”是“”成立的()条件A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要6.福州新港江阴港区地处福建最大海湾兴化湾西北岸,全年全日船泊进出港不受航道及潮水的限制,是迄今为止“我国少有、福建最佳”的天然良港.如图,是港区某个泊位一天中6时到18时的水深变化曲线近似满足函数,据此可知,这段时间水深(单位:m)的最大值为()A.5 B.6C.8 D.107.已知函数,的值域为,则实数的取值范围是A. B.C. D.8.已知为三角形内角,且,若,则关于的形状的判断,正确的是A.直角三角形 B.锐角三角形C.钝角三角形 D.三种形状都有可能9.已知U={2,3,4,5,6,7},M={3,4,5,7},N={2,4,5,6},则()A.

4,6

B.C

D.10.直线过点且与以点为端点的线段恒相交,则的斜率取值范围是().A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.在直角中,三条边恰好为三个连续的自然数,以三个顶点为圆心的扇形的半径为1,若在中随机地选取个点,其中有个点正好在扇形里面,则用随机模拟的方法得到的圆周率的近似值为__________.(答案用,表示)12.已知集合(1)当时,求的非空真子集的个数;(2)当时,若,求实数的取值范围13.设函数则的值为________14.已知是定义在R上的偶函数,且在上为增函数,,则不等式的解集为___________.15.已知,且,写出一个满足条件的的值:______.16.已知函数,则函数的所有零点之和为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,在四棱锥P-ABCD中,ABCD为平行四边形,AB⊥AC,PA⊥平面ABCD,且PA=AB=2,AC=1,点E是PD的中点.(1)求证:PB//平面AEC;(2)求D到平面AEC的距离.18.设函数.(1)若函数的图象C过点,直线与图象C交于A,B两点,且,求a,b;(2)当,时,根据定义证明函数在区间上单调递增.19.已知二次函数满足(1)求的最小值;(2)若在上有两个不同的零点,求的取值范围20.已知函数(1)求的单调递增区间;(2)若不等式在上恒成立,求实数的取值范围.21.定义在上的函数(且)为奇函数(1)求实数的值;(2)若函数的图象经过点,求使方程在有解的实数的取值范围;(3)不等式对于任意的恒成立,求实数的取值范围.

参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、A【解析】由不等式的解集为,可得的根为,由韦达定理可得的值,代入不等式解出其解集即可.【详解】的解集为,则的根为,即,,解得,则不等式可化为,即为,解得或,故选:A.2、C【解析】将方程转化为函数的零点问题,根据函数单调性判断零点所处区间即可.【详解】函数在上单增,由,知,函数的根处在里,故选:C3、A【解析】根据二次函数图象上特殊点的正负性,结合指数型函数的性质进行判断即可.【详解】由图象可知:,因为,所以由可得:,由可得:,由可得:,因此有,所以函数是减函数,,所以选项A符合,故选:A4、B【解析】将写成分段函数,画出函数图象数形结合,即可求得结果.【详解】当x≥0时,,当<0时,,作出函数的图象如图:当时,由=,解得=2当时,当<0时,由,即,解得=,∴此时=,∵[]上的最小值为,最大值为2,∴2,,∴的最大值为,故选:B【点睛】本题考查含绝对值的二次型函数的最值,涉及图象的绘制,以及数形结合,属综合基础题.5、B【解析】通过和同号可得前者等价于或,通过对数的性质可得后者等价于或,结合充分条件,必要条件的概念可得结果.【详解】或,或,即“”是“”成立必要不充分条件,故选:B.【点睛】本题主要考查了不等式的性质以及充分条件,必要条件的判定,属于中档题.6、C【解析】从图象中的最小值入手,求出,进而求出函数的最大值,即为答案.【详解】从图象可以看出,函数最小值为-2,即当时,函数取得最小值,即,解得:,所以,当时,函数取得最大值,,这段时间水深(单位:m)的最大值为8m.故选:C7、B【解析】由题得由g(t)的图像,可知当时,f(x)的值域为,所以故选B.8、C【解析】利用同角平方关系可得,,结合可得,从而可得的取值范围,进而可判断三角形的形状【详解】解:,,为三角形内角,,为钝角,即三角形为钝角三角形故选C【点睛】本题主要考查了利用同角平方关系的应用,其关键是变形之后从的符号中判断的取值范围,属于三角函数基本技巧的运用9、B【解析】利用交、并、补集运算,对答案项逐一验证即可【详解】,A错误={2,3,4,5,6,7}=,B正确

{3,4,5,7},C错误,,D错误故选:B【点睛】本题考查集合的混合运算,较简单10、D【解析】详解】∵∴根据如下图形可知,使直线与线段相交的斜率取值范围是故选:D.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】由题意得的三边分别为则由可得,所以,三角数三边分别为,因为,所以三个半径为的扇形面积之和为,由几何体概型概率计算公式可知,故答案为.【方法点睛】本题题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.12、(1)30(2)或【解析】(1)当时,可得中元素的个数,进而可得的非空真子集的个数;(2)根据,可分和两种情况讨论,可得出实数的取值范围【小问1详解】当时,,共有5个元素,所以的非空真子集的个数为【小问2详解】(1)当时,,解得;(2)当时,根据题意作出如图所示的数轴,可得或解得:或综上可得,实数的取值范围是或13、【解析】直接利用分段函数解析式,先求出的值,从而可得的值.【详解】因为函数,所以,则,故答案为.【点睛】本题主要考查分段函数的解析式、分段函数解不等式,属于中档题.对于分段函数解析式的考查是命题的动向之一,这类问题的特点是综合性强,对抽象思维能力要求高,因此解决这类题一定要层次清楚,思路清晰.14、【解析】根据题意求出函数的单调区间及所过的定点,进而解出不等式.【详解】因为是定义在R上的偶函数,且在上为增函数,,所以函数在上为减函数,.所以且在上为增函数,,在上为减函数,.所以的解集为:.故答案为:.15、0(答案不唯一)【解析】利用特殊角的三角函数值求解的值.【详解】因为,所以,,则,或,,同时满足即可.故答案为:016、0【解析】令,得到,在同一坐标系中作出函数的图象,利用数形结合法求解.【详解】因为函数,所以的对称中心是,令,得,在同一坐标系中作出函数的图象,如图所示:由图象知:两个函数图象有8个交点,即函数有8个零点由对称性可知:零点之和为0,故答案为:0三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、(1)证明见解析(2)【解析】(1)连接交于,连接,则可得,再由E是PD的中点,则可利用三角形中位线定理可得∥,然后利用线面平行的判定定理可证得结论;(2)由已知条件可证明,都为直角三角形,所以可求出,从而可求出的面积,然后利用等体积法可求出D到平面AEC的距离.【小问1详解】连接交于,连接,因为四边形为平行四边形,所以,因为点E是PD的中点,所以∥,因为平面,平面,所以∥平面,【小问2详解】因为∥,,所以,,因为平面,平面,所以,因为,、平面,所以平面,因为平面,所以,在直角中,,同理,在等腰中,,取的中点,连接,则∥,,因平面,所以平面,,设D到平面AEC的距离为,由,得,所以,得,所以D到平面AEC距离为18、(1),(2)证明见解析【解析】(1)由题意得,,设,,由题意得,即的两根为或,结合方程根与系数关系及,代入可求;(2),先设,利用作差法比较与的大小即可判断【小问1详解】由题意得,,设,,由题意得,即的两根为或,所以,所以,整理得,,解得,或(舍;故,;小问2详解】证明:当,时,,设,则,,,所以,所以在区间,上单调递增19、(1)(2)【解析】(1)根据函数的对称性可得出,再由均值不等式求解即可;(2)根据零点的分布列出不等式组求解即可.【小问1详解】因为满足,所以化简得因为对任意恒成立,所以,即,当且仅当时,等号成立所以当时,取得最小值为【小问2详解】由(1)知.对称轴方程为,因为在上有两个不同的零点,所以解得所以ab的取值范围是20、(1)(2)【解析】(1)由三角恒等变换化简,利用正弦型函数的单调性求解;(2)分离参数转化为恒成立,求出的最大值即可得解.【小问1详解】由,的单调递增区间为.【小问2详解】因为不等式在上恒成立,所以,,,,即21、(1)1(2)(3)答案见解析【解析】(1)根据题意可得,即可得解;(2)根据函数的图象经过点,可得函数经过点,从而可求得,在求出函数在时的值域,即可得出答案;(3)原不等式成立即为

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论