新疆维吾尔自治区吐鲁番市高昌区第二中学2025届数学高三上期末经典模拟试题含解析_第1页
新疆维吾尔自治区吐鲁番市高昌区第二中学2025届数学高三上期末经典模拟试题含解析_第2页
新疆维吾尔自治区吐鲁番市高昌区第二中学2025届数学高三上期末经典模拟试题含解析_第3页
新疆维吾尔自治区吐鲁番市高昌区第二中学2025届数学高三上期末经典模拟试题含解析_第4页
新疆维吾尔自治区吐鲁番市高昌区第二中学2025届数学高三上期末经典模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

新疆维吾尔自治区吐鲁番市高昌区第二中学2025届数学高三上期末经典模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.二项式的展开式中只有第六项的二项式系数最大,则展开式中的常数项是()A.180 B.90 C.45 D.3602.如图所示,直三棱柱的高为4,底面边长分别是5,12,13,当球与上底面三条棱都相切时球心到下底面距离为8,则球的体积为()A.1605π3 B.6423.在区间上随机取一个实数,使直线与圆相交的概率为()A. B. C. D.4.党的十九大报告明确提出:在共享经济等领域培育增长点、形成新动能.共享经济是公众将闲置资源通过社会化平台与他人共享,进而获得收入的经济现象.为考察共享经济对企业经济活跃度的影响,在四个不同的企业各取两个部门进行共享经济对比试验,根据四个企业得到的试验数据画出如下四个等高条形图,最能体现共享经济对该部门的发展有显著效果的图形是()A. B.C. D.5.复数满足,则()A. B. C. D.6.已知函数,,其中为自然对数的底数,若存在实数,使成立,则实数的值为()A. B. C. D.7.已知命题:任意,都有;命题:,则有.则下列命题为真命题的是()A. B. C. D.8.已知定义在上的函数满足,且当时,.设在上的最大值为(),且数列的前项的和为.若对于任意正整数不等式恒成立,则实数的取值范围为()A. B. C. D.9.下列选项中,说法正确的是()A.“”的否定是“”B.若向量满足,则与的夹角为钝角C.若,则D.“”是“”的必要条件10.已知集合,则等于()A. B. C. D.11.点为不等式组所表示的平面区域上的动点,则的取值范围是()A. B. C. D.12.若命题p:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题q:在边长为4的正方形ABCD内任取一点M,则∠AMB>90°的概率为π8A.p∧qB.(¬p)∧qC.p∧(¬q)D.¬q二、填空题:本题共4小题,每小题5分,共20分。13.已知向量,,满足,,,则的取值范围为_________.14.在平面直角坐标系中,已知圆及点,设点是圆上的动点,在中,若的角平分线与相交于点,则的取值范围是_______.15.的展开式中的系数为________.16.设α、β为互不重合的平面,m,n是互不重合的直线,给出下列四个命题:①若m∥n,则m∥α;②若m⊂α,n⊂α,m∥β,n∥β,则α∥β;③若α∥β,m⊂α,n⊂β,则m∥n;④若α⊥β,α∩β=m,n⊂α,m⊥n,则n⊥β;其中正确命题的序号为_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知中,内角所对边分别是其中.(1)若角为锐角,且,求的值;(2)设,求的取值范围.18.(12分)已知函数,.(1)若时,解不等式;(2)若关于的不等式在上有解,求实数的取值范围.19.(12分)如图:在中,,,.(1)求角;(2)设为的中点,求中线的长.20.(12分)已知椭圆,点为半圆上一动点,若过作椭圆的两切线分别交轴于、两点.(1)求证:;(2)当时,求的取值范围.21.(12分)已知为各项均为整数的等差数列,为的前项和,若为和的等比中项,.(1)求数列的通项公式;(2)若,求最大的正整数,使得.22.(10分)已知函数,.(1)当时,判断是否是函数的极值点,并说明理由;(2)当时,不等式恒成立,求整数的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解析】试题分析:因为的展开式中只有第六项的二项式系数最大,所以,,令,则,.考点:1.二项式定理;2.组合数的计算.2、A【解析】

设球心为O,三棱柱的上底面ΔA1B1C1的内切圆的圆心为O1,该圆与边B【详解】如图,设三棱柱为ABC-A1B1C所以底面ΔA1B1C1为斜边是A1C1则圆O1的半径为O设球心为O,则由球的几何知识得ΔOO1M所以OM=2即球O的半径为25所以球O的体积为43故选A.【点睛】本题考查与球有关的组合体的问题,解答本题的关键有两个:(1)构造以球半径R、球心到小圆圆心的距离d和小圆半径r为三边的直角三角形,并在此三角形内求出球的半径,这是解决与球有关的问题时常用的方法.(2)若直角三角形的两直角边为a,b,斜边为c,则该直角三角形内切圆的半径r=a+b-c3、D【解析】

利用直线与圆相交求出实数的取值范围,然后利用几何概型的概率公式可求得所求事件的概率.【详解】由于直线与圆相交,则,解得.因此,所求概率为.故选:D.【点睛】本题考查几何概型概率的计算,同时也考查了利用直线与圆相交求参数,考查计算能力,属于基础题.4、D【解析】根据四个列联表中的等高条形图可知,图中D中共享与不共享的企业经济活跃度的差异最大,它最能体现共享经济对该部门的发展有显著效果,故选D.5、C【解析】

利用复数模与除法运算即可得到结果.【详解】解:,故选:C【点睛】本题考查复数除法运算,考查复数的模,考查计算能力,属于基础题.6、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是减函数,(﹣1,+∞)上是增函数,故当x=﹣1时,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(当且仅当ex﹣a=4ea﹣x,即x=a+ln1时,等号成立);故f(x)﹣g(x)≥3(当且仅当等号同时成立时,等号成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故选:A.7、B【解析】

先分别判断命题真假,再由复合命题的真假性,即可得出结论.【详解】为真命题;命题是假命题,比如当,或时,则不成立.则,,均为假.故选:B【点睛】本题考查复合命题的真假性,判断简单命题的真假是解题的关键,属于基础题.8、C【解析】

由已知先求出,即,进一步可得,再将所求问题转化为对于任意正整数恒成立,设,只需找到数列的最大值即可.【详解】当时,则,,所以,,显然当时,,故,,若对于任意正整数不等式恒成立,即对于任意正整数恒成立,即对于任意正整数恒成立,设,,令,解得,令,解得,考虑到,故有当时,单调递增,当时,有单调递减,故数列的最大值为,所以.故选:C.【点睛】本题考查数列中的不等式恒成立问题,涉及到求函数解析、等比数列前n项和、数列单调性的判断等知识,是一道较为综合的数列题.9、D【解析】

对于A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,即可判断出;对于B若向量满足,则与的夹角为钝角或平角;对于C当m=0时,满足am2≤bm2,但是a≤b不一定成立;对于D根据元素与集合的关系即可做出判断.【详解】选项A根据命题的否定可得:“∃x0∈R,x02-x0≤0”的否定是“∀x∈R,x2-x>0”,因此A不正确;选项B若向量满足,则与的夹角为钝角或平角,因此不正确.选项C当m=0时,满足am2≤bm2,但是a≤b不一定成立,因此不正确;选项D若“”,则且,所以一定可以推出“”,因此“”是“”的必要条件,故正确.故选:D.【点睛】本题考查命题的真假判断与应用,涉及知识点有含有量词的命题的否定、不等式性质、向量夹角与性质、集合性质等,属于简单题.10、C【解析】

先化简集合A,再与集合B求交集.【详解】因为,,所以.故选:C【点睛】本题主要考查集合的基本运算以及分式不等式的解法,属于基础题.11、B【解析】

作出不等式对应的平面区域,利用线性规划的知识,利用的几何意义即可得到结论.【详解】不等式组作出可行域如图:,,,的几何意义是动点到的斜率,由图象可知的斜率为1,的斜率为:,则的取值范围是:,,.故选:.【点睛】本题主要考查线性规划的应用,根据目标函数的几何意义结合斜率公式是解决本题的关键.12、B【解析】因为从有2件正品和2件次品的产品中任选2件得到都是正品的概率为P1=1C42=16,即命题p是错误,则¬p是正确的;在边长为4的正方形ABCD内任取一点M点睛:本题将古典型概率公式、几何型概率公式与命题的真假(含或、且、非等连接词)的命题构成的复合命题的真假的判定有机地整合在一起,旨在考查命题真假的判定及古典概型的特征与计算公式的运用、几何概型的特征与计算公式的运用等知识与方法的综合运用,以及分析问题解决问题的能力。二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

设,,,,由,,,根据平面向量模的几何意义,可得A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,为的距离,利用数形结合求解.【详解】设,,,,如图所示:因为,,,所以A点轨迹为以O为圆心、1为半径的圆,C点轨迹为以B为圆心、1为半径的圆,则即的距离,由图可知,.故答案为:【点睛】本题主要考查平面向量的模及运算的几何意义,还考查了数形结合的方法,属于中档题.14、【解析】

由角平分线成比例定理推理可得,进而设点表示向量构建方程组表示点P坐标,代入圆C方程即可表示动点Q的轨迹方程,再由将所求视为该圆上的点与原点间的距离,所以其最值为圆心到原点的距离加减半径.【详解】由题可构建如图所示的图形,因为AQ是的角平分线,由角平分线成比例定理可知,所以.设点,点,即,则,所以.又因为点是圆上的动点,则,故点Q的运功轨迹是以为圆心为半径的圆,又即为该圆上的点与原点间的距离,因为,所以故答案为:【点睛】本题考查与圆有关的距离的最值问题,常常转化到圆心的距离加减半径,还考查了求动点的轨迹方程,属于中档题.15、80.【解析】

只需找到展开式中的项的系数即可.【详解】展开式的通项为,令,则,故的展开式中的系数为80.故答案为:80.【点睛】本题考查二项式定理的应用,涉及到展开式中的特殊项系数,考查学生的计算能力,是一道容易题.16、④【解析】

根据直线和平面,平面和平面的位置关系依次判断每个选项得到答案.【详解】对于①,当m∥n时,由直线与平面平行的定义和判定定理,不能得出m∥α,①错误;对于②,当m⊂α,n⊂α,且m∥β,n∥β时,由两平面平行的判定定理,不能得出α∥β,②错误;对于③,当α∥β,且m⊂α,n⊂β时,由两平面平行的性质定理,不能得出m∥n,③错误;对于④,当α⊥β,且α∩β=m,n⊂α,m⊥n时,由两平面垂直的性质定理,能够得出n⊥β,④正确;综上知,正确命题的序号是④.故答案为:④.【点睛】本题考查了直线和平面,平面和平面的位置关系,意在考查学生的空间想象能力和推断能力.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】

(1)由正弦定理直接可求,然后运用两角和的正弦公式算出;(2)化简,由余弦定理得,利用基本不等式求出,确定角范围,进而求出的取值范围.【详解】(1)由正弦定理,得:,且为锐角(2)【点睛】本题主要考查了正余弦定理的应用,基本不等式的应用,三角函数的值域等,考查了学生运算求解能力.18、(1)(2)【解析】

(1)零点分段法,分,,讨论即可;(2)当时,原问题可转化为:存在,使不等式成立,即.【详解】解:(1)若时,,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,当时,原不等式可化为,解得,所以,综上述:不等式的解集为;(2)当时,由得,即,故得,又由题意知:,即,故的范围为.【点睛】本题考查解绝对值不等式以及不等式能成立求参数,考查学生的运算能力,是一道容易题.19、(1);(2)【解析】

(1)通过求出的值,利用正弦定理求出即可得角;(2)根据求出的值,由正弦定理求出边,最后在中由余弦定理即可得结果.【详解】(1)∵,∴.由正弦定理,即.得,∵,∴为钝角,为锐角,故.(2)∵,∴.由正弦定理得,即得.在中由余弦定理得:,∴.【点睛】本题主要考查了正弦定理和余弦定理在解三角形中的应用,考查三角函数知识的运用,属于中档题.20、(1)见解析;(2).【解析】

(1)分两种情况讨论:①两切线、中有一条切线斜率不存在时,求出两切线的方程,验证结论成立;②两切线、的斜率都存在,可设切线的方程为,将该直线的方程与椭圆的方程联立,由可得出关于的二次方程,利用韦达定理得出两切线的斜率之积为,进而可得出结论;(2)求出点、的坐标,利用两点间的距离公式结合韦达定理得出,换元,可得出,利用二次函数的基本性质可求得的取值范围.【详解】(1)由于点在半圆上,则.①当两切线、中有一条切线斜率不存在时,可求得两切线方程为,或,,此时;②当两切线、的斜率都存在时,设切线的方程为(、的斜率分别为、),,,,.综上所述,;(2)根据题意得、,,令,则,所以,当时,,当

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论