版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第1页,共7页浙江省衢州市Q21教联盟2025届九年级数学第一学期开学复习检测试题题号一二三四五总分得分A卷(100分)一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、(4分)某交警在一个路口统计某时间段来往车辆的车速情况如下表,则上述车速的中位数和众数分别是()A.50,8 B.50,50 C.49,50 D.49,82、(4分)如图,已知:函数y=2x+b和y=ax-2的图象交于点P(﹣3,﹣4),则根据图象可得不等式2x+b>ax-2的解集是()A.x>﹣4 B.x>﹣3C.x>﹣2 D.x<﹣33、(4分)如图,在菱形中,对角线交于点,,则菱形的面积是()A.18 B. C.36 D.4、(4分)如图,点A(m,5),B(n,2)是抛物线C1:上的两点,将抛物线C1向左平移,得到抛物线C2,点A,B的对应点分别为点A',B'.若曲线段AB扫过的面积为9(图中的阴影部分),则抛物线C2的解析式是()A. B.C. D.5、(4分)中国药学家屠呦呦获2015年诺贝尔医学奖,她的突出贡献是创制新型抗疟药青蒿素和双氢青蒿素,这是中国医学界迄今为止获得的最高奖项,已知显微镜下某种疟原虫平均长度为0.0000015米,该长度用科学记数法可表示为()A.米 B.米 C.米 D.米6、(4分)如图,在中,,,则的度数是()A. B. C. D.7、(4分)如图,四边形ABCD中,AB=CD,对角线AC,BD交于点O,下列条件中不能说明四边形ABCD是平行四边形的是()A.AD=BC B.AC=BDC.AB∥CD D.∠BAC=∠DCA8、(4分)函数y=的图象在()A.第一、三象限 B.第一、二象限 C.第二、四象限 D.第三、四象限二、填空题(本大题共5个小题,每小题4分,共20分)9、(4分)若α是锐角且sinα=,则α的度数是.10、(4分)将直线向上平移3个单位长度与直线重合,则直线的解析式为__________.11、(4分)已知a=,b=,则a2-2ab+b2的值为____________.12、(4分)某一次函数的图象经过点(1,),且函数y的值随自变量x的增大而减小,请写出一个满足上述条件的函数关系式:______________.13、(4分)如图所示,已知AB=6,点C,D在线段AB上,AC=DB=1,P是线段CD上的动点,分别以AP,PB为边在线段AB的同侧作等边△AEP和等边△PFB,连接EF,设EF的中点为G,当点P从点C运动到点D时,则点G移动路径的长是_________.三、解答题(本大题共5个小题,共48分)14、(12分)一次函数图象经过(3,1),(2,0)两点.(1)求这个一次函数的解析式;(2)求当x=6时,y的值.15、(8分)一次函数图象经过(3,8)和(5,12)两点,求一次函数解析式.16、(8分)解下列一元二次方程(1)(2)17、(10分)某学校要从甲乙两名射击运动员中挑选一人参加全市比赛,在选拔赛中,每人进行了5次射击,甲的成绩(环)为:9.7,10,9.6,9.8,9.9;乙的成绩的平均数为9.8,方差为0.032;(1)甲的射击成绩的平均数和方差分别是多少?(2)据估计,如果成绩的平均数达到9.8环就可能夺得金牌,为了夺得金牌,应选谁参加比赛?18、(10分)我市遗爱湖公园内有一块四边形空地,如图所示,景区管理人员想在这块空地上铺满观赏草坪,需要测量其面积.经技术人员测量,∠ABC=90°,AB=20米,BC=15米,CD=7米,AD=24米.(1)请你帮助管理人员计算出这个四边形对角线AC的长度;(2)请用你学过的知识帮助管理员计算出这块空地的面积.B卷(50分)一、填空题(本大题共5个小题,每小题4分,共20分)19、(4分)已知点M(m,3)在直线上,则m=______.20、(4分)如图,比例规是一种画图工具,使用它可以把线段按一定的比例伸长或缩短,它是由长度相等的两脚和交叉构成的,如果把比例规的两脚合上,使螺丝钉固定在刻度3的地方(即同时使=3,=3),然后张开两脚,使、两个尖端分别在线段l的两端上,若=2,则的长是_________.21、(4分)如图,菱形ABCD的边AD⊥y轴,垂足为点E,顶点A在第二象限,顶点B在y轴的正半轴上,反比例函数y=(k≠0,x>0)的图象经过顶点C、D,若点C的横坐标为5,BE=3DE,则k的值为______.22、(4分)如图,在四边形ABCD中,AD∥BC,AD=12cm,BC=8cm,P,Q分别从A,C同时出发,P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,__________秒后四边形ABQP是平行四边形.23、(4分)如图,矩形中,,,在数轴上,若以点为圆心,对角线的长为半径作弧交数轴的正半轴于,则点的表示的数为_____.二、解答题(本大题共3个小题,共30分)24、(8分)先化简再求值:÷(﹣1),其中x=.25、(10分)如图,在ABCD中,点E,F分别在AD,BC边上,且BE∥DF.求证:(1)四边形BFDE是平行四边形;(2)AE=CF.26、(12分)计算或化简:(1);(2)
参考答案与详细解析一、选择题(本大题共8个小题,每小题4分,共32分,每小题均有四个选项,其中只有一项符合题目要求)1、B【解析】
把这组数据按照从小到大的顺序排列,第10、11个数的平均数是中位数,在这组数据中出现次数最多的是50,得到这组数据的众数.【详解】解:要求一组数据的中位数,把这组数据按照从小到大的顺序排列,第10、11两个数的平均数是50,所以中位数是50,在这组数据中出现次数最多的是50,即众数是50,故选:B.本题考查一组数据的中位数和众数,在求中位数时,首先要把这列数字按照从小到大或从大到小排列,找出中间一个数字或中间两个数字的平均数即为所求.2、B【解析】
根据一次函数的图象和两函数的交点坐标即可得出答案.【详解】∵函数y=2x+b和y=ax-2的图象交于点(-3,-4),则根据图象可得不等式2x+b>ax-2的解集是x>-3,故选B.此题考查了一次函数与一元一次不等式的应用,主要考查学生的观察能力和理解能力,题型较好,难度不大.3、B【解析】
先求出菱形对角线的长度,再根据菱形的面积计算公式求解即可.【详解】∵四边形ABCD是菱形,∴BD=2BO,AC=2AO,∵AO=3,BO=3,∴BD=6,AC=6,∴菱形ABCD的面积=×AC×BD=×6×6=18.故选B.此题主要考查菱形的对角线的性质和菱形的面积计算.4、C【解析】
图中阴影部分的面积等于BB'的长度乘以BB'上的高,根据点A、B的坐标求得高为3,结合面积可求得BB'为3,即平移距离是3,然后根据平移规律解答.【详解】解:,∵曲线段AB扫过的面积为9,点A(m,5),B(n,2)∴3BB′=9,∴BB′=3,即将函数的图象沿x轴向左平移3个单位长度得到抛物线C2,∴抛物线C2的函数表达式是:,故选:C.此题主要考查了二次函数图象与几何变换等知识,根据已知得出线段BB′的长度是解题关键.5、A【解析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.0000015=1.5×10-6,
故选:A.本题考查用科学记数法表示较小的数,一般形式为a×10-n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.6、B【解析】
由三角形内角和得到∠CBD的度数,由AD∥BC即可得到答案.【详解】解:∵,,∴∠CBD=180°-50°-55°=75°,在中,AD∥BC,∴∠ADB=∠CBD=75°.故选择:B.本题考查了三角形内角和,平行线的性质,解题的关键是熟练掌握三角形内角和与平行线的性质.7、B【解析】
解:A.∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意;B.∵AB=CD,AC=BD,∴不能说明四边形ABCD是平行四边形,故该选项符合题意;C.∵AB=CD,AB∥CD,∴四边形ABCD是平行四边形,故该选项不符合题意;D.∵AB=CD,∠BAC=∠DCA,AC=CA,∴△ABC≌△CDA,∴AD=BC,∴四边形ABCD是平行四边形,故该选项不符合题意.故选B.8、B【解析】
首先根据分式有意义的条件知x≠0,然后分x>0和x<0两种情况,根据反比例函数的性质作答.注意本题中函数值y的取值范围.【详解】解:当x>0时,函数y=即y=,其图象在第一象限;当x<0时,函数y=即y=-,其图象在第二象限.
故选B.反比例函数的性质:反比例函数y=的图象是双曲线.当k>0时,它的两个分支分别位于第一、三象限;当k<0时,它的两个分支分别位于第二、四象限.二、填空题(本大题共5个小题,每小题4分,共20分)9、60°【解析】试题分析:由α是锐角且sinα=,可得∠α=60°.考点:特殊角的三角函数值10、【解析】
根据一次函数的平移规律:左加右减,上加下减,即可求出原直线的解析式.【详解】解:∵直线向上平移3个单位长度与直线重合,∴直线向下平移3个单位长度与直线重合∴直线的解析式为:故答案为:.此题考查的是根据平移后的一次函数解析式,求原直线的解析式,掌握一次函数的平移规律:左加右减,上加下减,是解决此题的关键.11、8【解析】
二次根式的化简求值,一定要先化简再代入求值.二次根式运算的最后,注意结果要化到最简二次根式,二次根式的乘除运算要与加减运算区分,避免互相干扰.【详解】a2-2ab+b2=(a-b)2=.故答案为8.本题考查了二次根式的混合运算,熟练化简二次根式是解题的关键.12、y=-x-1(答案不唯一).【解析】
根据y随着x的增大而减小推断出k<1的关系,再利用过点(1,-2)来确定函数的解析式.【详解】解:设一次函数解析式为y=kx+b,∵一次函数y随着x的增大而减小,
∴k<1.
又∵直线过点(1,-2),
∴解析式可以为:y=-x-1等.
故答案为:y=-x-1(答案不唯一).此题主要考查了一次函数的性质,得出k的符号进而求出是解题关键.本题是开放题,答案不唯一。13、1【解析】
分别延长AE,BF交于点H,易证四边形EPFH为平行四边形,得出点G为PH的中点,则G的运动轨迹为△HCD的中位线MN,再求出CD的长度,运用中位线的性质求出MN的长度即可.【详解】解:如图,分别延长AE,BF交于点H,∵∠A=∠FPB=60°,∴AH∥PF,∵∠B=∠EPA=60°,∴BH∥PE∴四边形EPFH为平行四边形,∴EF与HP互相平分,∵点G为EF的中点,∴点G为PH的中点,即在P运动的过程中,G始终为PH的中点,∴G的运动轨迹为△HCD的中位线MN,∵CD=6-1-1=4,∴MN==1,∴点G移动路径的长是1,故答案为:1.本题考查了等边三角形及中位线的性质,以及动点的问题,是中考热点,解题的关键是得出G的运动轨迹为△HCD的中位线MN.三、解答题(本大题共5个小题,共48分)14、(1)y=x﹣2;(2)y=1.【解析】
(1)利用待定系数法求一次函数解析式;(2)利用(1)中解析式计算自变量为6所对应的函数值即可.【详解】(1)设一次函数解析式为y=kx+b,把(3,1),(2,0)代入得,解得,所以一次函数解析式为y=x﹣2;(2)当x=6时,y=x﹣2=6﹣2=1.本题考查了待定系数法求一次函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;解方程或方程组,求出待定系数的值,进而写出函数解析式.15、y=1x+1.【解析】试题分析:本题考查了用待定系数法求一次函数的解析式,熟练掌握待定系数法求函数的解析式是解题的关键.利用待定系数法即可求得函数的解析式.试题解析:解:设一次函数解析式为y=kx+b,则,解得.所以一次函数解析式为y=1x+1.考点:待定系数法求一次函数解析式.16、;.【解析】
(1)利用因式分解法进行求解即可;(2)利用公式法进行求解即可.【详解】(1),(x+2)(x+8)=0x+2=0或x+8=0,所以;(2),a=3,b=6,c=-2,b2-4ac=62-4×3×(-2)=60>0,x===-1±,所以.本题考查了解一元二次方程,根据一元二次方程的特点选择适当的方法进行求解是解题的关键.17、(1)9.8,0.02;(2)应选甲参加比赛.【解析】
(1)根据平均数和方差的定义列式计算可得;(2)根据方差的意义解答即可.【详解】(1)=×(9.7+10+9.6+9.8+9.9)=9.8(环),=×[(9.7﹣9.8)2+(10﹣9.8)2+(9.6﹣9.8)2+(9.8﹣9.8)2+(9.9﹣9.8)2]=0.02(环2);(2)∵甲、乙的平均成绩均为9.8环,而=0.02<=0.32,所以甲的成绩更加稳定一些,则为了夺得金牌,应选甲参加比赛.本题考查方差的定义与意义:方差反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.18、(1)25米;(2)234米2【解析】
(1)连接AC,利用勾股定理求出AC即可;(2)利用勾股定理的逆定理证明∠ADC=90°,计算两个直角三角形面积即可解决问题【详解】(1)连接AC.在RtΔABC中,由勾股定理得:AC=AB2(2)在ΔADC中,∵AD∴∠ADC=90°.∴S四边形ABCD=本题考查勾股定理及其逆定理的应用,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.一、填空题(本大题共5个小题,每小题4分,共20分)19、2【解析】
把点M代入即可求解.【详解】把点M代入,即3=2m-1,解得m=2,故填:2.此题主要考查一次函数,解题的关键是熟知坐标与函数的关系.20、6【解析】∵OA=3OD,OB=3OC,∴,∵AD与BC相交于点O,∴∠AOB=∠DOC,∴△AOB∽△DOC,∴,∵CD=2,∴.故本题应填写:6.21、【解析】
过点D作DF⊥BC于点F,由菱形的性质可得BC=CD,AD∥BC,可证四边形DEBF是矩形,可得DF=BE,DE=BF,在Rt△DFC中,由勾股定理可求DE=1,DF=3,由反比例函数的性质可求k的值.【详解】如图,过点D作DF⊥BC于点F,∵四边形ABCD是菱形,∴BC=CD,AD∥BC,∵∠DEB=90°,AD∥BC,∴∠EBC=90°,且∠DEB=90°,DF⊥BC,∴四边形DEBF是矩形,∴DF=BE,DE=BF,∵点C的横坐标为5,BE=3DE,∴BC=CD=5,DF=3DE,CF=5﹣DE,∵CD2=DF2+CF2,∴25=9DE2+(5﹣DE)2,∴DE=1,∴DF=BE=3,设点C(5,m),点D(1,m+3),∵反比例函数y=图象过点C,D,∴5m=1×(m+3),∴m=,∴点C(5,),∴k=5×=,故答案为:本题考查了反比例函数图象点的坐标特征,菱形的性质,勾股定理,求出DE的长度是本题的关键.22、.【解析】
根据一组对边平行且相等的四边形是平行四边形可得当AP=BQ时,四边形ABQP是平行四边形,因此设x秒后四边形ABQP是平行四边形,进而表示出AP=xcm,CQ=2xcm,QB=(8﹣2x)cm再列方程解出x的值即可.【详解】解:设x秒后,四边形ABQP是平行四边形,∵P以1cm/s的速度由A向D运动,Q以2cm/s的速度由C出发向B运动,∴AP=xcm,CQ=2xcm,∵BC=8cm,∴QB=(8﹣2x)cm,当AP=BQ时,四边形ABQP是平行四边形,∴x=8﹣2x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年投资银行家面试题及估值模型应用含答案
- 2026年软件开发岗面试题库
- 2026年金融行业风险管理部主管面试题集及解答
- 2026年服装设计师求职者常见问题及答案参考
- 2026年金融风控经理面试题目与解析
- 2026年运营总监岗位核心能力测试与面试指南含答案
- 2026年上海城投信息技术主管笔试题及答案解析
- 2026年扬州市公安局面向社会公开招聘警务辅助人员备考题库参考答案详解
- 《GBT 18114.4-2010稀土精矿化学分析方法 第4部分:氧化铌、氧化锆、氧化钛量的测定 电感耦合等离子体发射光谱法》专题研究报告解读
- 《DLT 1078-2007表面式凝汽器运行性能试验规程》专题研究报告深度
- 小型手持式采茶机
- 太空交通管理规则-洞察及研究
- 化学反应原理大题集训(含解析)-2026届高中化学一轮复习讲义
- 腹腔镜手术应用推广方案与技术指南
- 北京市西城区中学课余训练:现状洞察与发展探究
- 规划展馆改造项目方案(3篇)
- 玉米dh育种技术
- 头孢曲松钠过敏的观察与急救
- 幼儿园后勤人员培训会议记录2025
- 广告材料供货方案(3篇)
- 四上语文《快乐读书吧》作品导读《世界经典神话与传说》
评论
0/150
提交评论