山东省武城县第一中学2025届高二数学第一学期期末检测试题含解析_第1页
山东省武城县第一中学2025届高二数学第一学期期末检测试题含解析_第2页
山东省武城县第一中学2025届高二数学第一学期期末检测试题含解析_第3页
山东省武城县第一中学2025届高二数学第一学期期末检测试题含解析_第4页
山东省武城县第一中学2025届高二数学第一学期期末检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

山东省武城县第一中学2025届高二数学第一学期期末检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数,则()A. B.0C. D.12.若实数满足约束条件,则最小值为()A.-2 B.-1C.1 D.23.若直线先向右平移一个单位,再向下平移一个单位,然后与圆相切,则c的值为()A.8或-2 B.6或-4C.4或-6 D.2或-84.在四棱锥中,底面是正方形,为的中点,若,则()A. B.C. D.5.已知函数(其中)的部分图像如图所示,则函数的解析式为()A. B.C. D.6.已知双曲线左右焦点为,,过的直线与双曲线的右支交于P,Q两点,且,若为以Q为顶角的等腰三角形,则双曲线的离心率为()A. B.C. D.7.函数图象如图所示,则的解析式可以为A. B.C. D.8.人教A版选择性必修二教材的封面图案是斐波那契螺旋线,它被誉为自然界最完美的“黄金螺旋”,自然界存在很多斐波那契螺旋线的图案,例如向日葵、鹦鹉螺等.斐波那契螺旋线的画法是:以斐波那契数1,1,2,3,5,8,…为边长的正方形拼成长方形,然后在每个正方形中画一个圆心角为90°的圆弧,这些圆弧所连起来的弧线就是斐波那契螺旋线.下图为该螺旋线在正方形边长为1,1,2,3,5,8的部分,如图建立平面直角坐标系(规定小方格的边长为1),则接下来的一段圆弧所在圆的方程为()A. B.C. D.9.已知双曲线:的左、右焦点分别为,,过点且斜率为的直线与双曲线在第二象限的交点为,若,则双曲线的离心率是()A B.C. D.10.若构成空间向量的一组基底,则下列向量不共面的是()A.,, B.,,C.,, D.,,11.已知命题,,则p的否定是()A. B.C. D.12.已知等比数列中,,则这个数列的公比是()A.2 B.4C.8 D.16二、填空题:本题共4小题,每小题5分,共20分。13.已知等差数列的通项公式为,那么它的前项和___________.14.若关于的不等式恒成立,则实数的取值范围是______.15.过点作斜率为的直线与椭圆相交于、两个不同点,若是的中点,则该椭圆的离心率___________.16.已知函数有且仅有两个不同的零点,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)(1)已知命题p:;命题q:,若“”为真命题,求x的取值范围(2)设命题p:;命题q:,若是的充分不必要条件,求实数a的取值范围18.(12分)已知直线,直线经过点且与直线平行,设直线分別与x轴,y轴交于A,B两点.(1)求点A和B的坐标;(2)若圆C经过点A和B,且圆心C在直线上,求圆C的方程.19.(12分)求满足下列条件的双曲线的标准方程(1)焦点在x轴上,实轴长为4,实半轴长是虚半轴长的2倍;(2)焦点在y轴上,渐近线方程为,焦距长为20.(12分)在中,角A,B,C所对的边分别为a,b,c,且.(1)求角A的大小;(2)若,且的面积为,求的周长.21.(12分)2017年5月27日当今世界围棋排名第一的柯洁在与的人机大战中中盘弃子认输,至此柯洁与的三场比赛全部结束,柯洁三战全负,这次人机大战再次引发全民对围棋的关注,某学校社团为调查学生学习围棋的情况,随机抽取了100名学生进行调查,根据调查结果绘制的学生日均学习围棋时间的频率分布直方图(如图所示),将日均学习围棋时间不低于40分钟的学生称为“围棋迷”.(1)请根据已知条件完成下面列联表,并据此资料你是否有95%的把握认为“围棋迷”与性别有关?非围棋迷围棋迷合计男女1055合计(2)为了进一步了解“围棋迷”的围棋水平,从“围棋迷”中按性别分层抽样抽取5名学生组队参加校际交流赛,首轮该校需派两名学生出赛,若从5名学生中随机抽取2人出赛,求2人恰好一男一女的概率.参考数据:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82822.(10分)设函数(1)若曲线在点处的切线方程为,求;(2)求函数的单调区间

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】先求导,再代入求值.详解】,所以.故选:B2、B【解析】由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,把最优解的坐标代入目标函数得答案【详解】由约束条件作出可行域如图,联立,解得,由,得,由图可知,当直线过时,直线在轴上的截距最小,有最小值为故选:B3、A【解析】求出平移后的直线方程,再利用直线与圆相切并借助点到直线距离公式列式计算作答.【详解】将直线先向右平移一个单位,再向下平移一个单位所得直线方程为,因直线与圆相切,从而得,即,解得或,所以c的值为8或-2.故选:A4、C【解析】由为的中点,根据向量的运算法则,可得,即可求解.【详解】由底面是正方形,E为的中点,且,根据向量的运算法则,可得.故选:C.5、B【解析】根据题图有且,结合五点法求参数,即可得的解析式.【详解】由图知:且,则,所以,则,即,又,可得,,则,,又,即有.综上,.故选:B6、C【解析】由双曲线的定义得出中各线段长(用表示),然后通过余弦定理得出的关系式,变形后可得离心率【详解】由题意,又,所以,从而,,,中,,中.,所以,,所以,故选:C7、A【解析】利用排除法:对于B,令得,,即有两个零点,不符合题意;对于C,当时,,当且仅当时等号成立,即函数在区间上存在最大值,不符合题意;对于D,的定义域为,不符合题意;本题选择A选项.点睛:函数图象的识辨可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势.(3)从函数的奇偶性,判断图象的对称性.(4)从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项8、C【解析】由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由于每一个圆弧为四分之一圆,从而可求出下一段圆弧所以圆的圆心,进而可得其方程【详解】解:由题意可知图中每90°的圆弧半径符合斐波那契数1,1,2,3,5,8,…,从而可求出下一段圆弧的半径为13,由题意可知下一段圆弧过点,因为每一段圆弧的圆心角都为90°,所以下一段圆弧所在圆的圆心与点的连线平行于轴,因为下一段圆弧半径为13,所以所求圆的圆心为,所以所求圆的方程为,故选:C9、B【解析】根据得到三角形为等腰三角形,然后结合双曲线的定义得到,设,进而作,得出,由此求出结果【详解】因为,所以,即所以,由双曲线的定义,知,设,则,易得,如图,作,为垂足,则,所以,即,即双曲线的离心率为.故选:B10、C【解析】根据空间向量共面的条件即可解答.【详解】对于A,由,所以,,共面;对于B,由,所以,,共面;对于D,,所以,,共面,故选:C.11、A【解析】直接根据全称命题的否定写出结论.【详解】命题,为全称命题,故p的否定是:.故选:A【点睛】全称量词命题的否定是特称(存在)量词命题,特称(存在)量词命题的否定是全称量词命题12、A【解析】直接利用公式计算即可.【详解】设等比数列的公比为,由已知,,所以,解得.故选:A二、填空题:本题共4小题,每小题5分,共20分。13、【解析】由题意知等差数列的通项公式,即可求出首项,再利用等差数列求和公式即可得到答案.【详解】已知等差数列的通项公式为,..故答案为:.14、【解析】设由题可知,当时,可得适合题意,当时,可求函数的最小值即得,当时不合题意,即得.【详解】设,由题可知,∴,当时,,适合题意,所以,当时,令,则,此时时,,单调递减,,,单调递增,∴,又,∴,∴,即,解得,当时,时,,,故的值有正有负,不合题意;综上,实数的取值范围是.故答案为:.【点睛】关键点点睛:本题考查不等式恒成立求参数的取值范围,设由题可知,当时,利用导数可求函数的最小值,结合,可得,进而通过解,即得.15、【解析】利用点差法可求得的值,利用离心率公式的值.【详解】设点、,则,由已知可得,由题意可得,将两个等式相减得,所以,,因此,.故答案为:.16、【解析】函数有两个不同零点即y=a与g(x)=图像有两个交点,画出近似图象即得a的范围﹒【详解】∵函数有且仅有两个不同的零点,令,则y=a与g(x)=图像有两个交点,∵,∴当时,,单调递减,当时,,单调递增,∴当时,,作出函数与的图象,∴当时,y=a与g(x)有两个交点﹒故答案为:﹒三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解析】根据复合命题的真值表知:p真q假;非q是非p的充分不必要条件,等价于p是q的充分不必要条件,等价于p是q的真子集【详解】命题p:,即;命题,即;由于“”为真命题,则p真q假,从而由q假得,,所以x的取值范围是命题p:,即命题q:,即由于是的充分不必要条件,则p是q的充分不必要条件即有,【点睛】本题考查了复合命题及其真假属基础题18、(1),;(2).【解析】(1)由直线平行及所过的点,应用点斜式写出直线方程,进而求A、B坐标.(2)由(1)求出垂直平分线方程,并联立直线求圆心坐标,即可求圆的半径,进而写出圆C的方程.【小问1详解】由题设,的斜率为,又直线与直线平行且过,所以直线为,即,令,则;令,则.所以,.【小问2详解】由(1)可得:垂直平分线为,即,联立,可得,即,故圆的半径为,所以圆C的方程为.19、(1)(2)【解析】(1)(2)直接由条件解出即可得到双曲线方程.【小问1详解】由题意有,解得:,则双曲线的标准方程为:【小问2详解】由题意有,解得:,则双曲线的标准方程为:20、(1)(2)【解析】(1)由,根据正弦定理化简得,利用余弦定理求得,即可求解;(2)由的面积,求得,结合余弦定理,求得,即可求解.【小问1详解】解:因为,所以.由正弦定理得,可得,所以,因为,所以.【小问2详解】解:由的面积,所以.由余弦定理得,所以,所以,所以的周长为.21、(1)没有95%把握认为“围棋迷”与性别有关.(2).【解析】(1)由频率分布直方图求得频率与频数,填写列联表,计算观测值,对照临界值得出结论;(2)根据分层抽样原理,用列举法求出基本事件数,计算所求的概率值【详解】(1)由频率分布直方图可知,所以在抽取的100人中,“围棋迷”有25人,从而列联表如下非围棋迷围棋迷合计男301545女451055合计7525100因为,所以没有95%的把握认为“围棋迷”与性别有关.(2)由(1)中列联表可知25名“围棋迷”中有男生15名,女生10名,所以从“围棋迷”中按性别分层抽样抽取的5名学生中,有男生3名,记为,有女生2名,记为.则从5名学生中随机抽取2人出赛,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论