




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
重庆市江津区第六中学2025届高一数学第一学期期末综合测试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1.中国古代数学的瑰宝《九章算术》中记载了一种称为“曲池”的几何体,该几何体为上、下底面均为扇环形的柱体(扇环是指圆环被扇形截得的部分).现有一个如图所示的曲池,其高为3,底面,底面扇环所对的圆心角为,弧AD长度为弧BC长度的3倍,且,则该曲池的体积为()A B.C. D.2.在如图的正方体中,M、N分别为棱BC和棱的中点,则异面直线AC和MN所成的角为()A. B.C. D.3.三棱柱中,侧棱垂直于底面,底面三角形是正三角形,是的中点,则下列叙述正确的是①与是异面直线;②与异面直线,且③面④A.② B.①③C.①④ D.②④4.“”是的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件5.关于的不等式恰有2个整数解,则实数的取值范围是()A. B.C. D.6.已知函数对于任意两个不相等实数,都有成立,则实数的取值范围是()A. B.C. D.7.如图是函数的部分图象,则下列说法正确的是()A. B.C. D.8.已知直线与平行,则实数的取值是A.-1或2 B.0或1C.-1 D.29.函数的图像大致为A. B.C. D.10.已知实数集为,集合,,则A. B.C. D.二、填空题:本大题共6小题,每小题5分,共30分。11.已知幂函数的定义域为,且单调递减,则________.12.设函数,则____________13.已知角的终边经过点,则的值等于______.14.已知函数且关于的方程有四个不等实根,写出一个满足条件的值________15.已知一组样本数据5、6、a、6、8的极差为5,若,则其方差为________.16.如图,在四面体ABCD中,AB⊥平面BCD,△BCD是边长为6的等边三角形.若AB=4,则四面体ABCD外接球的表面积为________三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17.如图,已知点,是以为底边的等腰三角形,点在直线:上(1)求边上的高所在直线的方程;(2)求的面积18.已知.(1)若是奇函数,求的值,并判断的单调性(不用证明);(2)若函数在区间(0,1)上有两个不同的零点,求的取值范围.19.已知,向量,,记函数,且函数的图象相邻两对称轴间的距离为.(1)求函数的解析式;(2)若关于的方程在上有三个不相等的实数根,求的取值范围.20.设,,.(1)若,求;(2)若是的充分不必要条件,求的取值范围.21.在四棱锥中,底面是边长为的菱形,,面,,,分别为,的中点(Ⅰ)求证:面;(Ⅱ)求点到面的距离
参考答案一、选择题:本大题共10小题,每小题5分,共50分。在每个小题给出的四个选项中,恰有一项是符合题目要求的1、B【解析】利用柱体体积公式求体积.【详解】不妨设弧AD所在圆的半径为R,弧BC所在圆的半径为r,由弧AD长度为弧BC长度的3倍可知,,即.故该曲池的体积.故选:B2、C【解析】根据异面直线所成角的定义,找到与直线平行并且和相交的直线,即可找到异面直线所成的角,解三角形可求得结果.【详解】连接如下图所示,分别是棱和棱的中点,,正方体中可知,是异面直线所成的角,为等边三角形,.故选:C.【点睛】此题是个基础题,考查异面直线所成的角,以及解决异面直线所成的角的方法(平移法)的应用,体现了转化的思想和数形结合的思想.3、A【解析】对于①,都在平面内,故错误;对于②,为在两个平行平面中且不平行的两条直线,底面三角形是正三角形,是中点,故与是异面直线,且,故正确;对于③,上底面是一个正三角形,不可能存在平面,故错误;对于④,所在的平面与平面相交,且与交线有公共点,故错误.故选A4、A【解析】先看时,是否成立,即判断充分性;再看成立时,能否推出,即判断必要性,由此可得答案.【详解】当时,,即“”是的充分条件;当时,,则或,则或,即成立,推不出一定成立,故“”不是的必要条件,故选:A.5、B【解析】由已知及一元二次不等式的性质可得,讨论a结合原不等式整数解的个数求的范围,【详解】由恰有2个整数解,即恰有2个整数解,所以,解得或,①当时,不等式解集为,因为,故2个整数解为1和2,则,即,解得;②当时,不等式解集为,因为,故2个整数解为,则,即,解得.综上所述,实数的取值范围为或.故选:B.6、B【解析】由题可得函数为减函数,根据单调性可求解参数的范围.【详解】由题可得,函数为单调递减函数,当时,若单减,则对称轴,得:,当时,若单减,则,在分界点处,应满足,即,综上:故选:B7、A【解析】先通过观察图像可得A和周期,根据周期公式可求出,再代入最高点坐标可得.【详解】由图像得,,则,,,得,又,.故选:A.8、C【解析】因为两直线的斜率都存在,由与平行得,当时,两直线重合,,故选C.9、A【解析】详解】由得,故函数的定义域为又,所以函数为奇函数,排除B又当时,;当时,.排除C,D.选A10、C【解析】分析:先求出,再根据集合的交集运算,即可求解结果.详解:由题意,集合,所以,又由集合,所以,故选C.点睛:本题主要考查了集合的混合运算,熟练掌握集合的交集、并集、补集的运算是解答的关键,着重考查了推理与运算能力.二、填空题:本大题共6小题,每小题5分,共30分。11、【解析】根据幂函数的单调性,得到的范围,再由其定义域,根据,即可确定的值.【详解】因为幂函数的定义域为,且单调递减,所以,则,又,所以的所有可能取值为,,,当时,,其定义域为,不满足题意;当时,,其定义域为,满足题意;当时,,其定义域为,不满足题意;所以.故答案为:12、2【解析】利用分段函数由里及外逐步求解函数的值即可.【详解】解:由已知,所以,故答案为:.【点睛】本题考查分段函数的应用,函数值的求法,考查计算能力.13、【解析】根据三角函数定义求出、的值,由此可求得的值.【详解】由三角函数的定义可得,,因此,.故答案为:.14、(在之间都可以).【解析】画出函数的图象,结合图象可得答案.【详解】如图,当时,,当且仅当时等号成立,当时,,要使方程有四个不等实根,只需使即可,故答案为:(在之间都可以).15、2【解析】根据极差的定义可求得a的值,再根据方差公式可求得结果.【详解】因为该组数据的极差为5,,所以,解得.因为,所以该组数据的方差为故答案为:.16、【解析】由题设知,四面体ABCD的外接球也是与其同底等高的三棱柱的外接球,球心为上下底面中心连线EF的中点,所以,所以球的半径所以,外接球的表面积,所以答案应填:考点:1、空间几何体的结构特征;2、空间几何体的表面积三、解答题:本大题共5小题,共70分。解答时应写出文字说明、证明过程或演算步骤。17、解:(Ⅰ)x-y-1=0;(Ⅱ)2【解析】(1)由题意,求得直线的斜率,从而得到,利用直线的点斜式方程,即可求解直线的方程;(2)由,求得,利用两点间的距离公式和三角形的面积公式,即可求得三角形的面积.试题解析:(Ⅰ)由题意可知,为的中点,∴,且,∴所在直线方程为,即.(Ⅱ)由得∴∴,∴∴18、(1)答案见解析;(2)【解析】(1)函数为奇函数,则,据此可得,且函数在上单调递增;(2)原问题等价于在区间(0,1)上有两个不同的根,换元令,结合二次函数的性质可得的取值范围是.试题解析:(1)因为是奇函数,所以,所以;在上是单调递增函数;(2)
在区间(0,1)上有两个不同的零点,等价于方程在区间(0,1)上有两个不同的根,即方程在区间(0,1)上有两个不同的根,所以方程在区间上有两个不同的根,画出函数在(1,2)上的图象,如下图,由图知,当直线y=a与函数的图象有2个交点时,所以的取值范围为.点睛:函数零点的应用主要表现在利用零点求参数范围,若方程可解,通过解方程即可得出参数的范围,若方程不易解或不可解,则将问题转化为构造两个函数,利用两个函数图象的关系求解,这样会使得问题变得直观、简单,这也体现了数形结合思想的应用19、(1).(2)【解析】(1)化简的解析式,并根据图象相邻两对称轴间的距离求得.(2)利用换元法,结合二次函数零点分布的知识,列不等式组来求得的取值范围.【小问1详解】,由于函数的图象相邻两对称轴间的距离为,所以,所以.【小问2详解】,或,,,所以直线是的对称轴.依题意,关于的方程在上有三个不相等的实数根,设,则,设,则的两个不相等的实数根满足①或②,对于①,,此时,由解得,不符合.对于②,,即.所以的取值范围是.20、(1)或;(2).【解析】(1)先得出集合A,利用并集定义求出,再由补集定义即可求出;(2)由题可得集合是集合的真子集,则可列出不等式组求出.【详解】解:(1)当时,,又,所以,所以或;(2)由是的充分不必要条件,可知集合是集合的真子集.又因为,,,所以,解得,当时,,符合要求;当时,,符合要求,所以实数的取值范围是.【点睛】结论点睛:本题考查根据充分不必要条件求
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 数据库分布式架构设计试题及答案
- 入侵防御设备管理制度
- 关于公款使用管理制度
- 叉车司机岗位管理制度
- 工厂车辆设备管理制度
- 小区防冻物质管理制度
- 印染大中小修管理制度
- 停电操作单人管理制度
- 垃圾坑精细化管理制度
- 行政组织理论对接实践的试题及答案
- 地理-美国 课件-2024-2025学年人教版七年级下册地理
- GB/T 30134-2025冷库管理规范
- 2025年安徽省合肥八中高考最后一卷地理试题及答案
- 安徽省合肥市45中学2025届七年级数学第二学期期末监测模拟试题含解析
- 中学生成就目标导向下的学习满意度影响机制探讨
- 【课件】2025届高考英语最后一课课件
- 预防医学知识试题及答案汇编
- 初中化学教师招聘考试试题及参考答案
- 山塘租赁合同协议书
- 2025-2030年中国聚脲涂料行业市场现状供需分析及投资评估规划分析研究报告
- 地七年级下册全册知识要点总复习-2024-2025学年七年级地理教学课件(人教版2024)
评论
0/150
提交评论