




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
人教版八年级数学上册第十一章三角形专题测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题30分)一、单选题(10小题,每小题3分,共计30分)1、已知三角形的三边长分别为4,a,8,那么下列在数轴上表示该三角形的第三边a的取值范围正确的是(
)A. B.C. D.2、如图,中,,D是外一点,,,则(
).A. B. C. D.3、若中,,则一定是(
)A.锐角三角形 B.钝角三角形 C.直角三角形 D.任意三角形4、如图,AB∥CD,∠1=45°,∠3=80°,则∠2的度数为()A.30° B.35° C.40° D.45°5、如果一个多边形内角和是外角和的4倍,那么这个多边形有(
)条对角线.A.20 B.27 C.35 D.446、不一定在三角形内部的线段是()A.三角形的角平分线 B.三角形的中线C.三角形的高 D.三角形的高和中线7、若一个正n边形的每个内角为144°,则这个正n边形的所有对角线的条数是(
)A.9 B.12 C.35 D.408、三个等边三角形的摆放位置如图所示,若,则的度数为(
)A. B. C. D.9、如右图,五边形ABCDE的一个内角∠A=110°,则∠1+∠2+∠3+∠4等于(
)A.360° B.290° C.270° D.250°10、如图,是的外角,.若,,则的度数为(
)A. B. C. D.第Ⅱ卷(非选择题70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BE、CE分别为的内、外角平分线,BF、CF分别为的内、外角平分线,若,则_______度.2、如图,在中,,,点D在上,将沿直线翻折后,点C落在点E处,联结,如果DE//AB,那么的度数是__________度.3、如图,直线AB、CD相交于点O,∠BOC=α,点F在直线AB上且在点O的右侧,点E在射线OC上,连接EF,直线EM、FN交于点G.若∠MEF=n∠CEF,∠NFE=(1﹣2n)∠AFE,且∠EGF的度数与∠AFE的度数无关,则∠EGF=__.(用含有α的代数式表示)4、如图,将一张三角形纸片ABC的一角(∠A)折叠,使得点A落在四边形BCDE的外部点的位置,且点与点C在直线AB的异侧,折痕为DE.已知,,若的一边与BC平行,且,则m=______.5、如图,图中以BC为边的三角形的个数为_____.三、解答题(5小题,每小题10分,共计50分)1、如图,点E在DA的延长线上,CE平分∠BCD,∠BCD=2∠E,(1)求证:BCDE;(2)点F在线段CD上,若∠CBF=∠ABD=40°,∠BFC=∠ADB,求∠BDC的度数.2、(1)探究:如图1,求证:;(2)应用:如图2,,,求的度数.
3、问题情景:如图1,在同一平面内,点和点分别位于一块直角三角板的两条直角边,上,点与点在直线的同侧,若点在内部,试问,与的大小是否满足某种确定的数量关系?(1)特殊探究:若,则_________度,________度,_________度;(2)类比探索:请猜想与的关系,并说明理由;(3)类比延伸:改变点的位置,使点在外,其它条件都不变,判断(2)中的结论是否仍然成立?若成立,请说明理由;若不成立,请直接写出,与满足的数量关系式.4、如图,△ABC中,AD是高,AE、BF是角平分线,它们相交于点O,∠CAB=50°,∠C=60°,求∠DAE和∠BOA的度数.5、等腰三角形一腰上的中线把该三角形的周长分为13.5cm和11.5cm两部分,求这个等腰三角形各边的长.莉莉的解答过程如下:设在中,,BD是中线.∵中线将三角形的周长分为13.5cm和11.5cm,如图所示,,,∴,解得,,∴三角形三边的长为9cm,9cm,7cm.请问莉莉的解法正确吗?如果不正确,请给出理由.-参考答案-一、单选题1、A【解析】【分析】根据三角形两边之和大于第三边,三角形的两边差小于第三边可得8-4<a<8+4,根据不等式组解集的表示方法即可得答案.【详解】∵三角形的三边长分别为4,a,8,∴,即,∴在数轴上表示为A选项.故选:A.【考点】此题主要考查了三角形的三边关系及不等式组的解集的表示方法,三角形任意两边的和大于第三边,任意两边的差小于第三边;根据三角形的三边关系列出不等式组是解题关键.2、D【解析】【分析】设,则,,,由,即可求出.【详解】设,则,,,,故选:D.【考点】本题考查了三角形内角和定理的应用,解题关键是灵活运用相关知识进行求解.3、B【解析】【分析】根据三角形内角和180,求出最大角∠C,直接判断即可.【详解】解:∵∠A:∠B:∠C=1:2:4.∴设∠A=x°,则∠B=2x°,∠C=4x°,根据三角形内角和定理得到:x+2x+4x=180,解得:x=.则∠C=4×=°,则△ABC是钝角三角形.故选B.【考点】本题考查了三角形按角度的分类.4、B【解析】【详解】分析:根据平行线的性质和三角形的外角性质解答即可.详解:如图,∵AB∥CD,∠1=45°,∴∠4=∠1=45°,∵∠3=80°,∴∠2=∠3-∠4=80°-45°=35°,故选B.点睛:此题考查平行线的性质,关键是根据平行线的性质和三角形的外角性质解答.5、C【解析】【分析】根据多边形的内角和公式(n-2)•180°与外角和定理列出方程,然后求解,多边形对角线的条数可以表示成.【详解】解:设这个多边形是n边形,根据题意得,(n-2)•180°=4×360°,解得n=10.10×(10-3)÷2=35(条).故选:C.【考点】本题考查了多边形的内角和与外角和、方程的思想.关键是记住内角和的公式与外角和的特征,及多边形对角线的条数公式.6、C【解析】【分析】根据三角形的高、中线、角平分线的性质解答.【详解】解:因为在三角形中,它的中线、角平分线一定在三角形的内部,而钝角三角形的两条高在三角形的外部.故选:C.【考点】本题考查了三角形的高、中线、角平分线.熟悉各个性质是解题的关键.7、C【解析】【分析】先根据内角的度数求得外角的度数,进而求得多边形的边数,根据对角线的条数为即可求得答案.【详解】解:一个正n边形的每个内角为144°,则每个外角为,故,则对角线的条数为,故选C.【考点】本题考查了正多边形的内角与外角的关系,求正多边形的对角线条数,求得是解题的关键.8、B【解析】【分析】先根据图中是三个等边三角形可知三角形各内角均等于60°,用表示出中间三角形的各内角,再根据三角形的内角和即可得出答案.【详解】解:如图所示,图中三个等边三角形,∴,,,由三角形的内角和定理可知:,即,又∵,∴,故答案选B.【考点】本题考查等边三角形的性质及三角形的内角和定理,熟悉等边三角形各内角均为60°是解答此题的关键.9、B【解析】【分析】由多边形外角和等于360°问题可解【详解】解:∵∠A=110°∴∠A的外角度数为180°-110°=70°由多边形外角和为360°∴∠1+∠2+∠3+∠4+70°=360°∴∠1+∠2+∠3+∠4=290°故应选B【考点】本题考查了多边形外角和和邻补角的定义,解答关键是根据题意解答问题.10、B【解析】【分析】根据平行线的性质及三角形的内角和定理即可求解.【详解】∵,∴∠B=∴∠A=180°-∠B-故选B.【考点】此题主要考查三角形的内角和,解题的关键是熟知三角形的内角和等于180°.二、填空题1、13【解析】【分析】根据BF,CF分别为△EBC的内、外角平分线分别设,,再根据BE,CE分别为△ABC的内,外角平分线,得到和,最后根据和求出即可.【详解】BF,CF分别为的内、外角平分线,,,设,,,,又BE,CE分别为的内,外角平分线,,,,,又,,又,,,故答案为:13.【考点】此题考查了三角形内角和外角角平分线的相关知识,涉及到三角形外角等于与其不相邻的两内角和的知识,有一定难度.2、40【解析】【分析】先求出∠BAC,由AB//DE得出∠E=∠BAE,再根据翻折得性质得∠E=∠C,∠CAD=∠EAD,即可求出答案【详解】∵∠B=40°,∠C=30°,∴∠BAC=180°-40°-30°=110°,根据翻折的性质可知,∠E=∠C,∠CAD=∠EAD,∴∠E=30°,∵AB//DE,∴∠E=∠BAE=30°,∴∠EAC=∠BAC-∠BAE=110°-30°=80°,∴∠CAD=∠EAD=∠EAC=40°,故答案为:40【考点】题目主要考查三角形翻折的性质,平行线的性质,三角形内角和定理等,理解题意,综合运用各个知识点是解题关键.3、α##α3【解析】【分析】利用三角形外角的性质:三角形的一个外角等于和它不相邻的两个内角和,以及三角形内角和定理求解.【详解】解:∵∠CEF=∠AFE+∠BOC,∠BOC=α,∴∠CEF=α+∠AFE,∵∠MEF=n∠CEF,∴∠MEF=n(α+∠AFE),∵∠EGF=∠MEF﹣∠NFE,∴∠EGF=n(α+∠AFE)﹣(1﹣2n)∠AFE=nα+(3n﹣1)∠AFE,∵∠EGF的度数与∠AFE的度数无关,∴3n﹣1=0,即n=,∴∠EGF=α;故答案为:α.【考点】此题考查了三角形外角的性质及角度计算,解题的关键是理解∠EGF的度数与∠AFE的度数无关的含义.4、45或30【解析】【分析】分类讨论①当时、②当时和③当时,根据平行线的性质,折叠的性质结合题意即可求解.【详解】解:分类讨论,①如图,当时,∵,∴.∴由翻折可知,∴m=45;②如图,当时,∵,∴.∵,∴由折叠可知,∴,∴,∴,∴m=30;③当时,点与点C在直线AB的同侧,不符合题意.综上可知m的值为45或30.故答案为:45或30.【考点】本题主要考查平行线的性质,折叠的性质.利用分类讨论的思想是解题关键.5、4.【解析】【分析】根据三角形的定义即可得到结论.【详解】解:∵以BC为公共边的三角形有△BCD,△BCE,△BCF,△ABC,∴以BC为公共边的三角形的个数是4个.故答案为:4.【考点】此题考查了学生对三角形的认识.注意要审清题意,按题目要求解题.三、解答题1、(1)见解析(2)40°【解析】【分析】(1)只需要证明∠BCE=∠E,即可得到;(2)先证明∠BFC=∠CBF+∠DBF,再由BFC是△BFD的外角,得到∠BFC=∠DBF+∠BDC,即可推出∠BDC=∠CBF=40°.(1)解:∵CE平分∠BCD,∴∠BCD=2∠BCE,∵∠BCD=2∠E,∴∠BCE=∠E,∴;(2)解:∵,∴∠ADB=∠DBC,∵∠DBC=∠CBF+∠DBF,∴∠ADB=∠CBF+∠DBF,∵∠BFC=∠ADB,∴∠BFC=∠CBF+∠DBF,∵∠BFC是△BFD的外角,∴∠BFC=∠DBF+∠BDC,∴∠DBF+∠BDC=∠CBF+∠DBF,∴∠BDC=∠CBF=40°.【考点】本题主要考查了平行线的性质与判定,三角形外角的性质,角平分线的定义,熟知平行线的性质与判定条件是解题的关键.2、230°【解析】【分析】(1)连接OA并延长,由三角形外角的性质可知∠1+∠B=∠3,∠2+∠C=∠4,两式相加即可得出结论;(2)连接AD,由(1)的结论可知∠F+∠2+∠3=∠DEF,∠1+∠4+∠C=∠ABC,两式相加即可得出结论.【详解】(1)如图1,连接AO并延长,∵是的外角,∴.①;∵是的外角,∴②;①+②,得,∴.(2)如图2,连接AD.由(1),得③;④;③+④得:,∵,,∴.
【考点】本题考查的是三角形外角的性质,根据题意作出辅助线,构造出三角形是解答此题的关键.3、(1)125,90,35;(2)∠ABP+∠ACP=90°-∠A,证明见解析;(3)结论不成立.∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【解析】【分析】(1)根据三角形内角和即可得出∠ABC+∠ACB,∠PBC+∠PCB,然后即可得出∠ABP+∠ACP;(2)根据三角形内角和定理进行等量转换,即可得出∠ABP+∠ACP=90°-∠A;(3)按照(2)中同样的方法进行等量转换,求解即可判定.【详解】(1)∠ABC+∠ACB=180°-∠A=180°-55°=125度,∠PBC+∠PCB=180°-∠P=180°-90°=90度,∠ABP+∠ACP=∠ABC+∠ACB-(∠PBC+∠PCB)=125°-90°=35度;
(2)猜想:∠ABP+∠ACP=90°-∠A;
证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠ABP+∠PBC,∠ACB=∠ACP+∠PCB,∴(∠ABP+∠PBC)+(∠ACP+∠PCB)=180°-∠A,∴(∠ABP+∠ACP)+(∠PBC+∠PCB)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴(∠ABP+∠ACP)+90°=180°-∠A,∴∠ABP+∠ACP=90°-∠A.
(3)判断:(2)中的结论不成立.
证明:在△ABC中,∠ABC+∠ACB=180°-∠A,∵∠ABC=∠PBC-∠ABP,∠ACB=∠PCB-∠ACP,∴(∠PBC+∠PCB)-(∠ABP+∠ACP)=180°-∠A,又∵在Rt△PBC中,∠P=90°,∴∠PBC+∠PCB=90°,∴∠ABP-∠ACP=90°-∠A,∠ABP+∠ACP=∠A-90°或∠ACP-∠ABP=90°-∠A.【考点】此题主要考查利用三角形内角和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 汕尾一年级上册试卷及答案
- 肇庆市实验中学高中历史二:第四单元中国社会主义发展道路的探索测验教案
- 《2025年签订新员工合同通知书》
- 浙江国企招聘2025宁波市鄞州区区属国企招聘2人笔试参考题库附带答案详解
- 机床制造中的环境保护措施实施考核试卷
- 电气安装变压器的选型与安装考核试卷
- 燃气具制造工艺流程考核试卷
- 绢纺与丝织品的在线销售与数字营销考核试卷
- 绿化施工安全管理考核试卷
- 电视接收设备的智能日程管理考核试卷
- 2024年同等学力申硕-同等学力(政治学)笔试历年真题荟萃含答案
- 2024年建设工程承包合同范本(通用)-(带附加条款)
- 放射性金属矿的辐射事故案例与防范
- 四年级下册数学运算定律简便计算200题及答案
- 不良分析改善报告
- 2022年山西省中考历史试卷(含答案)
- ICH-GCP中英文对照(完整)
- 国开《Windows网络操作系统管理》形考任务6-配置Web服务实训
- 沙漠铁塔基础施工方案
- 菜品制作流程
- 采暖工程预算课件
评论
0/150
提交评论