人教A版(新教材)高中数学选择性必修第三册第七章 随机变量及其分布教学设计2:章末复习课_第1页
人教A版(新教材)高中数学选择性必修第三册第七章 随机变量及其分布教学设计2:章末复习课_第2页
人教A版(新教材)高中数学选择性必修第三册第七章 随机变量及其分布教学设计2:章末复习课_第3页
人教A版(新教材)高中数学选择性必修第三册第七章 随机变量及其分布教学设计2:章末复习课_第4页
人教A版(新教材)高中数学选择性必修第三册第七章 随机变量及其分布教学设计2:章末复习课_第5页
已阅读5页,还剩5页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教A版(新教材)高中数学选择性必修第三册PAGEPAGE1章末复习课知识网络知识要点1.条件概率的性质(1)非负性:0≤P(B|A)≤1.(2)可加性:如果是两个互斥事件,则P(B∪C|A)=P(B|A)+P(C|A).2.相互独立事件的性质(1)推广:一般地,如果事件A1,A2,…,An相互独立,那么这n个事件同时发生的概率等于每个事件发生的概率的积,即P(A1A2…An)=P(A1)P(A2)…P(An).(2)对于事件A与B及它们的和事件与积事件有下面的关系:P(A∪B)=P(A)+P(B)-P(AB).3.二项分布满足的条件(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n次独立重复试验中某事件发生的次数.4.均值与方差的性质(1)若η=aξ+b(a,b是常数),ξ是随机变量,则η也是随机变量,E(η)=E(aξ+b)=aE(ξ)+b.(2)D(aξ+b)=a2D(ξ).(3)D(ξ)=E(ξ2)-〖E(ξ)〗2.5.正态变量在三个特殊区间内取值的概率(1)P(μ-σ<X<μ+σ)=0.683.(2)P(μ-2σ<X<μ+2σ)=0.954.(3)P(μ-3σ<X<μ+3σ)=0.997.易误辨析1.求分布列时要检验概率的和是否为1,如果不是,要重新检查修正.2.要注意识别独立重复试验和二项分布.3.在记忆D(aX+b)=a2D(X)时要注意D(aX+b)≠aD(X)+b,D(aX+b)≠aD(X).4.易忽略判断随机变量是否服从二项分布,盲目使用二项分布的期望和方差公式计算致误.考点突破突破一条件概率与全概率公式1.求条件概率有两种方法:一种是基于样本空间Ω,先计算P(A)和P(AB),再利用P(B|A)=eq\f(P(AB),P(A))求解;另一种是缩小样本空间,即以A为样本空间计算AB的概率.2.掌握条件概率与全概率运算,重点提升逻辑推理和数学运算的核心素养.例1.在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(1)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.解:设“第1次抽到理科题”为事件A,“第2题抽到理科题”为事件B,则“第1次和第2次都抽到理科题”为事件AB.(1)从5道题中不放回地依次抽取2道题的事件数为n(Ω)=Aeq\o\al(2,5)=20.根据分步乘法计数原理,n(A)=Aeq\o\al(1,3)×Aeq\o\al(1,4)=12.于是P(A)=eq\f(n(A),n(Ω))=eq\f(12,20)=eq\f(3,5).(2)因为n(AB)=Aeq\o\al(2,3)=6,所以P(AB)=eq\f(n(AB),n(Ω))=eq\f(6,20)=eq\f(3,10).(3)法一:由(1)(2)可得,在第1次抽到理科题的条件下,第2次抽到理科题的概率P(B|A)=eq\f(P(AB),P(A))=eq\f(\f(3,10),\f(3,5))=eq\f(1,2).法二:因为n(AB)=6,n(A)=12,所以P(B|A)=eq\f(n(AB),n(A))=eq\f(6,12)=eq\f(1,2).反思感悟条件概率的计算要注意以下三点(1)明白是在谁的条件下,计算谁的概率.(2)明确P(A),P(B|A)以及P(AB)三者间的关系,实现三者间的互化.(3)理解全概率公式P(A)=eq\i\su(i=1,n,P)(Bi)P(A|Bi)中化整为零的计算思想.跟踪训练1.有甲、乙、丙3批罐头,每批100个,其中各有1个是不合格的.从三批罐头中各抽出1个,计算:3个中恰有1个不合格的概率.解:法一:设从甲、乙、丙3批罐头中各抽出1个,得到合格品的事件分别为A,B,C.“3个罐头中恰有1个不合格”包括下列3种搭配:eq\o(A,\s\up6(-))BC,Aeq\o(B,\s\up6(-))C,ABeq\o(C,\s\up6(-)).这三种搭配是互斥的,且从甲、乙、丙3批罐头中各抽出1个罐头相互之间没有影响,因此,其中恰有1个罐头不合格的概率为P1=P(ABC)+P(ABC)+P(ABC)=P(A)P(B)P(C)+P(A)P(B)P(C)+P(A)P(B)P(C)=3×(0.01×0.992)≈0.03.法二:甲、乙、丙3批罐头各抽出一个恰为不合格品的概率都为0.01,且3批罐头抽取时相互独立,因此可视为独立重复试验.其概率:P=Ceq\o\al(1,3)×0.01×(1-0.01)2=3×0.01×(0.99)2≈0.03.突破二n重伯努利试验及二项分布1.n重伯努利试验是相互独立事件的延伸,其试验结果出现的次数X~B(n,p),即P(X=k)=Ceq\o\al(k,n)pk(1-p)n-k.2.学习该部分知识重点提升数学建模及数学运算的核心素养.例2.已知一个口袋中有m个白球,n个黑球(m,n∈N+,n≥2),这些球除颜色外完全相同.现将口袋中的球随机地逐个取出,并放入如图所示的编号为1,2,3,…,m+n的抽屉内,其中第k次取出的球放入编号为k的抽屉(k=1,2,3,…,m+n).123…m+n(1)试求编号为2的抽屉内放的是黑球的概率p;(2)随机变量X表示最后一个取出的黑球所在抽屉编号的倒数,E(X)是X的数学期望,证明:E(X)<eq\f(n,(m+n)(n-1)).(1)解:编号为2的抽屉内放的是黑球的概率p为:p=eq\f(C\o\al(n-1,m+n-1),C\o\al(n,m+n))=eq\f(n,m+n).(2)证明:随机变量X的概率分布为:Xeq\f(1,n)eq\f(1,n+1)eq\f(1,n+2)…eq\f(1,k)…eq\f(1,m+n)Peq\f(C\o\al(n-1,n-1),C\o\al(n,m+n))eq\f(C\o\al(n-1,n),C\o\al(n,m+n))eq\f(C\o\al(n-1,n+1),C\o\al(n,m+n))…eq\f(C\o\al(n-1,k-1),C\o\al(n,m+n))…eq\f(C\o\al(n-1,n+m-1),C\o\al(n,m+n))随机变量X的期望为:E(X)=eq\i\su(k=n,m+n,)eq\f(1,k)·eq\f(C\o\al(n-1,k-1),C\o\al(n,m+n))=eq\f(1,C\o\al(n,m+n))eq\i\su(k=n,m+n,)eq\f(1,k)·eq\f((k-1)!,(n-1)!(k-n)!).所以E(X)<eq\f(1,C\o\al(n,m+n))eq\i\su(k=n,m+n,)eq\f((k-2)!,(n-1)!(k-n)!)=eq\f(1,(n-1)C\o\al(n,m+n))eq\i\su(k=n,m+n,)eq\f((k-2)!,(n-2)!(k-n)!)=eq\f(1,(n-1)C\o\al(n,m+n))(1+Ceq\o\al(n-2,n-1)+Ceq\o\al(n-2,n)+…+Ceq\o\al(n-2,m+n-2))=eq\f(1,(n-1)C\o\al(n,m+n))(Ceq\o\al(n-1,n-1)+Ceq\o\al(n-2,n-1)+Ceq\o\al(n-2,n)+…+Ceq\o\al(n-2,m+n-2))=eq\f(1,(n-1)C\o\al(n,m+n))(Ceq\o\al(n-1,n)+Ceq\o\al(n-2,n)+…+Ceq\o\al(n-2,m+n-2))=…=eq\f(1,(n-1)C\o\al(n,m+n))(Ceq\o\al(n-1,m+n-2)+Ceq\o\al(n-2,m+n-2))=eq\f(C\o\al(n-1,m+n-1),(n-1)C\o\al(n,m+n))=eq\f(n,(m+n)(n-1)),即E(X)<eq\f(n,(m+n)(n-1)).反思感悟与二项分布有关的问题关键是二项分布的判定,可从以下几个方面判定(1)每次试验中,事件发生的概率是相同的.(2)各次试验中的事件是相互独立的.(3)每次试验只有两种结果:事件要么发生,要么不发生.(4)随机变量是这n重伯努利试验中某事件发生的次数.跟踪训练2.一个袋中装有大小相同的球,其中红球5个,黑球3个.现从中随机摸出3个球.(1)求至少摸到一个红球的概率;(2)求摸到黑球的个数X的分布列、均值.解:(1)至少摸到1个红球的概率为1-eq\f(C\o\al(3,3),C\o\al(3,8))=1-eq\f(1,56)=eq\f(55,56).(2)由题意知X服从参数N=8,M=3,n=3的超几何分布,X的可能取值为0,1,2,3,则P(X=k)=eq\f(C\o\al(k,3)C\o\al(3-k,5),C\o\al(3,8))(k=0,1,2,3),∴P(X=0)=eq\f(C\o\al(0,3)C\o\al(3,5),C\o\al(3,8))=eq\f(5,28),P(X=1)=eq\f(C\o\al(1,3)C\o\al(2,5),C\o\al(3,8))=eq\f(15,28),P(X=2)=eq\f(C\o\al(2,3)C\o\al(1,5),C\o\al(3,8))=eq\f(15,56),P(X=3)=eq\f(C\o\al(3,3),C\o\al(3,8))=eq\f(1,56).∴X的分布列为X0123Peq\f(5,28)eq\f(15,28)eq\f(15,56)eq\f(1,56)∴EX=0×eq\f(5,28)+1×eq\f(15,28)+2×eq\f(15,56)+3×eq\f(1,56)=eq\f(9,8).突破三离散型随机变量的均值与方差1.均值和方差都是随机变量的重要的数字特征,方差是建立在均值的基础之上,它表明了随机变量所取的值相对于它的均值的集中与离散程度,二者的联系密切,在现实生产生活中的应用比较广泛.2.掌握均值和方差的计算,重点提升逻辑推理和数据分析的核心素养.例3.甲、乙、丙三支足球队进行比赛,根据规则:每支队伍比赛两场,共赛三场,每场比赛胜者得3分,负者得0分,没有平局.已知乙队胜丙队的概率为eq\f(1,5),甲队获得第一名的概率为eq\f(1,6),乙队获得第一名的概率为eq\f(1,15).(1)求甲队分别胜乙队和丙队的概率P1,P2;(2)设在该次比赛中,甲队得分为ξ,求ξ的分布列及数学期望、方差.解:(1)设“甲队胜乙队”的概率为P1,“甲队胜丙队”的概率为P2.根据题意,甲队获得第一名,则甲队胜乙队且甲队胜丙队,所以甲队获得第一名的概率为P1×P2=eq\f(1,6).①乙队获得第一名,则乙队胜甲队且乙队胜丙队,所以乙队获得第一名的概率为(1-P1)×eq\f(1,5)=eq\f(1,15).②解②,得P1=eq\f(2,3),代入①,得P2=eq\f(1,4),所以甲队胜乙队的概率为eq\f(2,3),甲队胜丙队的概率为eq\f(1,4).(2)ξ的可能取值为0,3,6.当ξ=0时,甲队两场比赛皆输,其概率为P(ξ=0)=eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(2,3)))×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,4)))=eq\f(1,4);当ξ=3时,甲队两场只胜一场,其概率为P(ξ=3)=eq\f(2,3)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,4)))+eq\f(1,4)×eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(2,3)))=eq\f(7,12);当ξ=6时,甲队两场皆胜,其概率为P(ξ=6)=eq\f(2,3)×eq\f(1,4)=eq\f(1,6).所以ξ的分布列为ξ036Peq\f(1,4)eq\f(7,12)eq\f(1,6)所以Eξ=0×eq\f(1,4)+3×eq\f(7,12)+6×eq\f(1,6)=eq\f(11,4).Dξ=eq\b\lc\(\rc\)(\a\vs4\al\co1(0-\f(11,4)))2×eq\f(1,4)+eq\b\lc\(\rc\)(\a\vs4\al\co1(3-\f(11,4)))2×eq\f(7,12)+eq\b\lc\(\rc\)(\a\vs4\al\co1(6-\f(11,4)))2×eq\f(1,6)=eq\f(59,16).反思感悟求离散型随机变量X的均值与方差的步骤(1)理解X的意义,写出X可能的全部取值.(2)求X取每个值的概率或求出函数P(X=k).(3)写出X的分布列.(4)由分布列和均值的定义求出E(X).(5)由方差的定义,求D(X),若X~B(n,p),则可直接利用公式求,E(X)=np,D(X)=np(1-p).跟踪训练3.2015年9月3日,抗战胜利70周年纪念活动在北京隆重举行,受到全国人民的瞩目.纪念活动包括举行纪念大会、阅兵式、招待会和文艺晚会等,据统计,抗战老兵由于身体原因,参加纪念大会、阅兵式、招待会这三个环节(可参加多个,也可都不参加)的情况及其概率如下表所示:参加纪念活动的环节数0123概率eq\f(1,3)eq\f(1,3)eq\f(1,6)eq\f(1,6)(1)若从抗战老兵中随机抽取2人进行座谈,求这2人参加纪念活动的环节数不同的概率;(2)某医疗部门决定从这些抗战老兵中随机抽取3名进行体检(其中参加纪念活动的环节数为3的抗战老兵数大于等于3),设随机抽取的这3名抗战老兵中参加三个环节的有ξ名,求ξ的分布列和数学期望.解:(1)设“这2名抗战老兵参加纪念活动的环节数不同”为事件M,则“这2名抗战老兵参加纪念活动的环节数相同”为事件eq\o(M,\s\up6(-)),根据题意可知P(eq\o(M,\s\up6(-)))=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))eq\s\up12(2)+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,3)))eq\s\up12(2)+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,6)))eq\s\up12(2)+eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,6)))eq\s\up12(2)=eq\f(5,18),由对立事件的概率计算公式可得P(M)=1-P(eq\o(M,\s\up6(-)))=eq\f(13,18),故这2名抗战老兵参加纪念活动的环节数不同的概率为eq\f(13,18).(2)根据题意可知随机变量ξ的可能取值为0,1,2,3,且P(ξ=0)=eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,6)))eq\s\up12(3)=eq\f(125,216),P(ξ=1)=Ceq\o\al(1,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,6)))eq\s\up12(2)·eq\f(1,6)=eq\f(25,72),P(ξ=2)=Ceq\o\al(2,3)eq\b\lc\(\rc\)(\a\vs4\al\co1(1-\f(1,6)))·eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,6)))eq\s\up12(2)=eq\f(5,72),P(ξ=4)=eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,6)))eq\s\up12(3)=eq\f(1,216).则随机变量ξ的分布列为:ξ0123Peq\f(125,216)eq\f(25,72)eq\f(5,72)eq\f(1,216)则数学期望E(ξ)=0×eq\f(125,216)+1×eq\f(25,72)+2×eq\f(5,72)+3×eq\f(1,216)=eq\f(1,2).突破四正态分布1.正态分布是连续型随机变量X的一种分布,其在概率和统计中占有重要地位,尤其统计学中的3σ原则在生产生活中有广泛的应用.2.熟记正态分布的特征及应用3σ原则解决实际问题是本章的两个重点,在学习中提升直观想象、数据分析的素养.例4.已知随机变量X服从正态分布N(0,σ2),若P(X>2)=0.023,则P(-2≤X≤2)=()A.0.447 B.0.628C.0.954 D.0.977〖答案〗C〖解析〗∵随机变量X服从标准正态分布N(0,σ2),∴正态曲线关于x=0对称.又P(X>2)=0.023,∴P(X<-2)=0.023,∴P(-2≤X≤2)=1-2×0.023=0.954.反思感悟正态曲线的应用及求解策略(1)正态曲线是轴对称图形,常借助其对称性解题.(2)正态分布的概率问题常借助〖μ-σ,μ+σ〗,〖μ-2σ,μ+2σ〗,〖μ-3σ,μ+3σ〗三个区间内的概率值求解.(3)注意正态曲线与频率分布直方图的结合.跟踪训练4.某学校高三2500名学生第二次模拟考试总成绩服从正态分布N(500,502),请您判断考生成绩X在550~600分的人数.解:∵考生成绩X~N(500,502),∴μ=500,σ=50,∴P(550<X≤600)=eq\f(1,2)〖P(500-2×50<X≤500+2×50)-P(500-50<X≤500+50)〗=eq\f(1,2)(0.9544-0.6826)=0.1359,∴考生成绩在550~600分的人数为2500×0.1359≈340(人).巩固训练1.若随机变量ξ的分布列如下表所示,则p1等于()ξ-124Peq\f(1,5)eq\f(2,3)p1A.0 B.eq\f(2,15)C.eq\f(1,15) D.1〖答案〗B〖解析〗由eq\f(1,5)+eq\f(2,3)+p1=1,得p1=eq\f(2,15).2.设随机变量ξ~B(n,p),若E(ξ)=2.4,D(ξ)=1.44,则参数n,p的值为()A.n=4,p=0.6B.n=6,p=0.4C.n=8,p=0.3D.n=24,p=0.1〖答案〗B〖解析〗E(ξ)=np=2.4,D(ξ)=np(1-p)=1.44,解得n=6,p=0.4.3.已知随机变量ξ服从正态分布N(1,σ2),且P(ξ<-2)+P(ξ>6)=0.1998,则P(-4<ξ<4)=________.〖答案〗0.8002〖解析〗正态曲线的对称轴为x=1,如图.由图可知:P(-4<ξ<-2)=P(4<ξ<6)所以P(-4<ξ<4)=P(-2<ξ<6)=1-P(ξ<-2)-P(ξ>6)=1-0.1998=0.8002.4.甲、乙两人组成“星队”参加猜成语活动,每轮活动由甲、乙各猜一个成语.在一轮活动中,如果两人都猜对,则“星队”得3分;如果只有一人猜对,则“星队”得1分;如果两人都没猜对,则“星队”得0分.已知甲每轮猜对的概率是eq\f(3,4),乙每轮猜对的概率是eq\f(2,3);每轮活动中甲、乙猜对与否互不影响,各轮结果亦互不影响.假设“星队”参加两轮活动,求:(1)“星队”至少猜对3个成语的概率;(2)“星队”两轮得分之和X的分布列和数学期望EX.解:(1)记事件A:“甲第一轮猜对”,记事件B:“乙第一轮猜对”,记事件C:“甲第二轮猜对”,记事件D:“乙第二轮猜对”,记事件E:“‘星队’至少猜对3个成语”.由题意,E=ABCD+eq\x\to(A)BCD+Aeq\x\to(B)CD+ABeq\x\to(C)D+ABCeq\x\to(D),由事件的独立性与互斥性,P(E)=P(ABCD)+P(eq\x\to(A)BCD)+P(Aeq\x\to(B)CD)+P(ABeq\x\to(C)D)+P(ABCeq\x\to(D))=P(A)P(B)P(C)P(D)+P(eq\x\to(A))·P(B)P(C)P(D)+P(A)P(eq\x\to(B))P(C)P(D)+P(A)P(B)·P(eq\x\to(C))P(D)+P(A)P(B)P(C)P(eq\x\to(D))=eq\f(3,4)×eq\f(2,3)×eq\f(3,4)×eq\f(2,3)+2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(1,4)×\f(2,3)×\f(3,4)×\f(2,3)+\f(3,4)×\f(1,3)×\f(3,4)×\f(2,3)))=eq\f(2,3),所以“星队”至少猜对3个成语的概率为eq\f(2,3).(2)由题意,随机变量X可能的取值为0,1,2,3,4,6.由事件的独立性与互斥性,得P(X=0)=eq\f(1,4)×eq\f(1,3)×eq\f(1,4)×eq\f(1,3)=eq\f(1,144),P(X=1)=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)×\f(1,3)×\f(1,4)×\f(1,3)+\f(1,4)×\f(2,3)×\f(1,4)×\f(1,3)))=eq\f(10,144)=eq\f(5,72),P(X=2)=eq\f(3,4)×eq\f(1,3)×eq\f(3,4)×eq\f(1,3)+eq\f(3,4)×eq\f(1,3)×eq\f(1,4)×eq\f(2,3)+eq\f(1,4)×eq\f(2,3)×eq\f(3,4)×eq\f(1,3)+eq\f(1,4)×eq\f(2,3)×eq\f(1,4)×eq\f(2,3)=eq\f(25,144),P(X=3)=eq\f(3,4)×eq\f(2,3)×eq\f(1,4)×eq\f(1,3)+eq\f(1,4)×eq\f(1,3)×eq\f(3,4)×eq\f(2,3)=eq\f(12,144)=eq\f(1,12),P(X=4)=2×eq\b\lc\(\rc\)(\a\vs4\al\co1(\f(3,4)×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论