人教A版(新教材)高中数学选择性必修第三册学案:§6 1 第2课时 两个计数原理的综合应用_第1页
人教A版(新教材)高中数学选择性必修第三册学案:§6 1 第2课时 两个计数原理的综合应用_第2页
人教A版(新教材)高中数学选择性必修第三册学案:§6 1 第2课时 两个计数原理的综合应用_第3页
人教A版(新教材)高中数学选择性必修第三册学案:§6 1 第2课时 两个计数原理的综合应用_第4页
人教A版(新教材)高中数学选择性必修第三册学案:§6 1 第2课时 两个计数原理的综合应用_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

人教A版(新教材)高中数学选择性必修第三册PAGEPAGE1第2课时两个计数原理的综合应用学习目标1.进一步理解分类加法计数原理和分步乘法计数原理的区别.2.会正确应用这两个计数原理计数.知识点一两个计数原理的区别与联系分类加法计数原理分步乘法计数原理相同点回答的都是有关做一件事的不同方法种数的问题不同点针对的是“分类”问题不同点各种方法相互独立,用其中任何一种方法都可以做完这件事各个步骤中的方法互相依存,只有每一个步骤都完成才算做完这件事知识点二两个计数原理的应用用两个计数原理解决计数问题时,最重要的是在开始计算之前要仔细分析两点:一、要完成的“一件事”是什么;二、需要分类还是需要分步.(1)分类要做到“不重不漏”,分类后再分别对每一类进行计数,最后用分类加法计数原理求和,得到总数.(2)分步要做到“步骤完整”,即完成了所有步骤,恰好完成任务.分类后再计算每一步的方法数,最后根据分步乘法计数原理,把完成每一步的方法数相乘,得到总数.思考分类“不重不漏”的含义是什么?〖答案〗“不重”即各类之间没有交叉点,“不漏”即各类的并集是全集.1.一个科技小组中有4名女同学、5名男同学,从中任选1名同学参加学科竞赛,共有不同的选派方法______种,若从中任选1名女同学和1名男同学参加学科竞赛,共有不同的选派方法______种.〖答案〗920〖解析〗根据分类加法计数原理,从中任选1名同学参加学科竞赛,共有5+4=9(种)选派方法.根据分步乘法计数原理,从中任选1名女同学和1名男同学参加学科竞赛,共有4×5=20(种)选派方法.2.有一排四个信号显示窗,每个窗可亮红灯、绿灯或不亮灯,则这排信号显示窗所发出的信号种数是________.〖答案〗81〖解析〗每个信号显示窗都有3种可能,故有3×3×3×3=34=81(种)不同信号.3.十字路口来往的车辆,如果不允许回头,共有________种行车路线.〖答案〗12〖解析〗起点为4种可能性,终点为3种可能性,则行车路线共有4×3=12(种).4.多项式(a1+a2+a3)(b1+b2)+(a4+a5)(b3+b4)展开式共有________项.〖答案〗10〖解析〗共有3×2+2×2=10(项).一、组数问题例1用0,1,2,3,4五个数字.(1)可以排成多少个三位数字的电话号码?(2)可以排成多少个三位数?(3)可以排成多少个能被2整除的无重复数字的三位数?解(1)三位数字的电话号码,首位可以是0,数字也可以重复,每个位置都有5种排法,共有5×5×5=53=125(个).(2)三位数的首位不能为0,但可以有重复数字,首先考虑首位的排法,除0外共有4种方法,第二、三位可以排0,因此,共有4×5×5=100(个).(3)被2整除的数即偶数,末位数字可取0,2,4,因此,可以分两类,一类是末位数字是0,则有4×3=12(种)排法;一类是末位数字不是0,则末位有2种排法,即2或4,再排首位,因0不能在首位,所以有3种排法,十位有3种排法,因此有2×3×3=18(种)排法.因而有12+18=30(种)排法.即可以排成30个能被2整除的无重复数字的三位数.延伸探究由本例中的五个数字可组成多少个无重复数字的四位奇数?解完成“组成无重复数字的四位奇数”这件事,可以分四步:第一步定个位,只能从1,3中任取一个,有2种方法;第二步定首位,从1,2,3,4中除去用过的一个,从剩下的3个中任取一个,有3种方法;第三步,第四步把剩下的包括0在内的3个数字先排百位有3种方法,再排十位有2种方法.由分步乘法计数原理知共有2×3×3×2=36(个).反思感悟对于组数问题,应掌握以下原则(1)明确特殊位置或特殊数字,是我们采用“分类”还是“分步”的关键.一般按特殊位置(末位或首位)分类,分类中再按特殊位置(特殊元素)优先的策略分步完成,如果正面分类较多,可采用间接法求解.(2)要注意数字“0”不能排在两位数或两位数以上的数的最高位.跟踪训练1用0,1,2,3,4,5可以组成多少个无重复数字且比2000大的四位偶数?解完成这件事可分为三类:第一类是个位数字为0的比2000大的四位偶数,可以分三步完成:第一步,选取千位上的数字,只有2,3,4,5可以选择,有4种选法;第二步,选取百位上的数字,除0和千位上已选定的数字以外,还有4个数字可以选择,有4种选法;第三步,选取十位上的数字,有3种选法.由分步乘法计数原理知,这类数的个数为4×4×3=48.第二类是个位数字为2的比2000大的四位偶数,可以分三步完成:第一步,选取千位上的数字,除去2,1,0只有3个数字可以选择,有3种选法;第二步,选取百位上的数字,在去掉已经确定的首尾2个数字之后,还有4个数字可以选择,有4种选法;第三步,选取十位上的数字,有3种选法.由分步乘法计数原理知,这类数的个数为3×4×3=36.第三类是个位数字为4的比2000大的四位偶数,其方法步骤同第二类.对以上三类用分类加法计数原理,得所求无重复数字且比2000大的四位偶数有48+36+36=120(个).二、占位模型中标准的选择例2(1)4名同学选报跑步、跳高、跳远三个项目,每人报一项,共有多少种报名方法?(2)4名同学选报跑步、跳高、跳远三个项目,每项限报一人,且每人至多报一项,共有多少种报名方法?(3)4名同学争夺跑步、跳高、跳远三项冠军,共有多少种可能的结果?解(1)要完成的是“4名同学每人从三个项目中选一项报名”这件事,因为每人必报一项,4人都报完才算完成,所以按人分步,且分为四步,又每人可在三项中选一项,选法为3种,所以共有3×3×3×3=81(种)报名方法.(2)每项限报一人,且每人至多报一项,因此跑步项目有4种选法,跳高项目有3种选法,跳远项目只有2种选法.根据分步乘法计数原理,可得不同的报名方法有4×3×2=24(种).(3)要完成的是“三个项目冠军的获取”这件事,因为每项冠军只能有一人获得,三项冠军都有得主,这件事才算完成,所以应以“确定三项冠军得主”为线索进行分步,而每项冠军的得主有4种可能结果,所以共有4×4×4=64(种)可能的结果.反思感悟在占位模型中选择按元素还是按位置进行分解的标准是“唯一性”,即元素是否选、选是否只选一次,位置是否占、占是否只占一次.解题时一般选择具有“唯一性”的对象进行分解.跟踪训练2某市汽车牌照号码可以上网自编,但规定从左数第2个号码只能从字母B,C,D中选择,其他四个号码可以从0~9这10个数字中选择(数字可以重复).若某车主第1个号码(从左到右)只想在数字3,5,6,8,9中选择,其他号码只想在1,3,6,9中选择,则他可选的车牌号码的所有可能情况有()A.180种B.360种C.720种D.960种〖答案〗D〖解析〗按照车主的要求,从左到右第1个号码有5种选法,第2个号码有3种选法,其余3个号码各有4种选法,因此共有5×3×4×4×4=960(种)情况.三、涂色问题例3将红、黄、蓝、白、黑五种颜色涂在如图所示“田”字形的4个小方格内,每格涂一种颜色,相邻两格涂不同的颜色,如果颜色可以反复使用,共有多少种不同的涂色方法?解第1个小方格可以从5种颜色中任取一种颜色涂上,有5种不同的涂法.①当第2个、第3个小方格涂不同颜色时,有4×3=12(种)不同的涂法,第4个小方格有3种不同的涂法,由分步乘法计数原理可知有5×12×3=180(种)不同的涂法.②当第2个、第3个小方格涂相同颜色时,有4种涂法,由于相邻两格不同色,因此,第4个小方格也有4种不同的涂法,由分步乘法计数原理可知有5×4×4=80(种)不同的涂法.由分类加法计数原理可得共有180+80=260(种)不同的涂法.延伸探究本例中的区域改为如图所示,其他条件均不变,则不同的涂法共有多少种?解依题意,可分两类情况:①④不同色;①④同色.第一类:①④不同色,则①②③④所涂的颜色各不相同,我们可将这件事情分成4步来完成.第一步涂①,从5种颜色中任选一种,有5种涂法;第二步涂②,从余下的4种颜色中任选一种,有4种涂法;第三步涂③与第四步涂④时,分别有3种涂法和2种涂法.于是由分步乘法计数原理得,不同的涂法有5×4×3×2=120(种).第二类:①④同色,则①②③不同色,我们可将涂色工作分成三步来完成.第一步涂①④,有5种涂法;第二步涂②,有4种涂法;第三步涂③,有3种涂法.于是由分步乘法计数原理得,不同的涂法有5×4×3=60(种).综上可知,所求的涂色方法共有120+60=180(种).反思感悟解决涂色问题的一般思路(1)按区域的不同,以区域为主分步计数,用分步乘法计数原理分析.(2)以颜色为主分类讨论,适用于“区域、点、线段”等问题,用分类加法计数原理分析.(3)将空间问题平面化,转化为平面区域的涂色问题.跟踪训练3如图所示,将四棱锥S-ABCD的每一个顶点染上一种颜色,并使同一条棱上的两端点异色,现有5种颜色可供使用,求不同的染色方法.解由题意知,四棱锥S-ABCD的顶点S,A,B所染的颜色互不相同,它们共有5×4×3=60(种)染色方法.当S,A,B染色确定时,不妨设其颜色分别为1,2,3,剩余2种颜色分别为4和5.若C染2,则D可染3或4或5,有3种染法;若C染4,则D可染3或5,有2种染法;若C染5,则D可染3或4,有2种染法.由分类加法计数原理知,当S,A,B染法确定时,C,D有7种染法.由分步乘法计数原理得,不同的染色方法有60×7=420(种).四、种植问题例4将3种作物全部种植在如图所示的5块试验田中,每块种植一种作物,且相邻的试验田不能种同一种作物,则不同的种植方法共有________种.〖答案〗42〖解析〗分别用a,b,c代表3种作物,先安排第一块田,有3种方法,不妨设放入a,再安排第二块田,有2种方法b或c,不妨设放入b,第三块也有2种方法a或c.(1)若第三块田放c:abc第四、五块田分别有2种方法,共有2×2=4(种)方法.(2)若第三块田放a:aba第四块有b或c2种方法,①若第四块放c:abac第五块有2种方法;②若第四块放b:abab第五块只能种作物c,共1种方法.综上,共有3×2×(2×2+2+1)=42(种)方法.反思感悟种植问题按种植的顺序分步进行,用分步乘法计数原理计数或按种植品种恰当选取情况分类,用分类加法计数原理计数.跟踪训练4从黄瓜、白菜、油菜、扁豆4种蔬菜品种中选出3种,分别种在不同土质的三块土地上,其中黄瓜必须种植,求有多少种不同的种植方法.解方法一(直接法)若黄瓜种在第一块土地上,则有3×2=6(种)不同的种植方法.同理,黄瓜种在第二块、第三块土地上,均有3×2=6(种)不同的种植方法.故不同的种植方法共有6×3=18(种).方法二(间接法)从4种蔬菜中选出3种,种在三块地上,有4×3×2=24(种),其中不种黄瓜有3×2×1=6(种),故共有不同的种植方法24-6=18(种).1.现有6名同学去听同时进行的5个课外知识讲座,每名同学可自由选择其中的一个讲座,则不同选法的种数是()A.56 B.65C.eq\f(5×6×5×4×3×2,2) D.6×5×4×3×2〖答案〗A〖解析〗每位同学都有5种选择,共有5×5×5×5×5×5=56(种).2.如果x,y∈N,且1≤x≤3,x+y<7,则满足条件的不同的有序自然数对(x,y)的个数是()A.5B.12C.15D.4〖答案〗C〖解析〗当x=1时,y的取值可能为0,1,2,3,4,5,有6种情况;当x=2时,y的取值可能为0,1,2,3,4,有5种情况;当x=3时,y的取值可能为0,1,2,3,有4种情况.根据分类加法计数原理可得,满足条件的(x,y)的个数为6+5+4=15.3.已知集合S={a1,a2},T={b1,b2},则从集合S到T的对应关系共有()A.1个B.2个C.3个D.4个〖答案〗D〖解析〗可分两步,第一步,集合S中a1对应到集合T中的元素有2个不同的对应关系;第二步,集合S中a2对应到集合T中的元素,有2个不同的对应关系,由分步乘法计数原理知,从集合S到T的对应关系共有2×2=4(个),故选D.4.如图所示,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求相邻的两个格子颜色不同,则不同的涂色方法共有________种.(用数字作答)〖答案〗750〖解析〗首先给最左边的一个格子涂色,有6种选择,左边第二个格子有5种选择,第三个格子有5种选择,第四个格子也有5种选择,根据分步乘法计数原理

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论