版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
EUROPEANCENTRALBANK
EUROSYSTEM
WorkingPaperSeries
YıldızAkkaya,LeaBitter,ClausBrand,LuísFonseca
AstatisticalapproachtoidentifyingECBmonetarypolicy
No2994
Disclaimer:ThispapershouldnotbereportedasrepresentingtheviewsoftheEuropeanCentralBank(ECB).TheviewsexpressedarethoseoftheauthorsanddonotnecessarilyreflectthoseoftheECB.
ECBWorkingPaperSeriesNo29941
Abstract
Weconstructmonetarypolicyindicatorsfromhigh-frequencyassetpricechanges
followingpolicyannouncements,emphasisingtheconcentrationofassetpricere-sponsesalongspecificdimensionsandtheirleptokurticdistribution.Traditionally,thesedimensionsareidentifiedbyrotatingprincipalcomponentsbasedoneconomicassumptionsthatoverlookinformationinexcesskurtosis.WeemployVarimaxro-tation,leveragingexcesskurtosiswithoutusingeconomicrestrictions.Withinasetofeuro-arearisk-freeassetsVarimaxvalidatespolicynewsalongdimensionsprevi-ouslyderivedfromstructuralidentificationapproachesandrejectsevidenceofmacro-informationshocks.Yet,onceaddingriskyassetsVarimaxidentifiesonlyonerisk-freefactorinmedium-tolong-termyieldsandinsteadpointstoadditionalrisk-shiftfac-tors.
JELcode:E43,E52,E58,C46,G14.
Keywords:Monetarypolicyinstruments,Varimax,fattails,eventstudy,high-frequencyidentification.
ECBWorkingPaperSeriesNo29942
Non-technicalsummary
Inthewakeoftheglobalfinancialcrisis(GFC)andtheeconomicchallengesarisingfromitcentralbankshavedeployednovelpolicytools,impactingassetpricesinwaysdifferentfromthetraditionalshort-terminterestrateinstrument.TheEuropeanCentralBank(ECB)hasemployedvariousstrategiessuchasforwardguidanceoninterestratesandas-setpurchasestolowerlong-terminterestratesandreducefragmentationinthesovereigndebtmarket.Thesemeasureshaveattenuatedriskaversionandeasedfinancingcondi-tionsacrosstheboard.Conversely,asinflationsurgedinthepost-pandemicenvironment,centralbankshavebeguntounwindassetpurchaseprogrammesandtightenedmonetarypolicy,whileatthesametimecontinuingtoguidefinancialmarketexpectationsaboutfuturepolicyaction.Thisapproachhashelpedmanageshort-termpolicyexpectationsbuthasalsoledtosignificantresponsesinlong-termyieldstopolicynews.Thesedevel-opmentshaveshownhowdifferentmonetarypolicyinstrumentscanaffectspecificassetpricesegments,suggestingthatmonetarypolicyoperatesalongmultipledimensions.
Thispaperintroducesanew,agnosticapproachtomeasurethemulti-dimensionaleffectsofmonetarypolicyusinghigh-frequencyassetpricemovementsaroundECBpolicyannouncements.Traditionalmethodsoftensolelyrelyoneconomicassumptions,butourapproachutilisesstatisticalpropertiesofthedatatoidentifydifferentmonetarypolicyfactorswithoutimposingeconomicrestrictions.ThisapproachisnamedVarimaxrotationofprincipalcomponents.
WhenapplyingVarimaxrotationtorisk-freeyields,weidentifythesamepolicyfac-tors(target,path,andQEi.e.quantitativeeasing)asthosefoundinpreviousstudiesandwedonotfindevidenceofmacro-economicinformationnewsinECBpolicyannounce-ments.Thisvalidationshowsthatourmethodcanstatisticallysupporttheconventionalapproachtoidentifyingthesefactors.Yet,addingriskyassetsblursthepreviouslyidenti-fiedseparationbetweentheforwardguidanceandtheQEdimensioninfavourofrisk-shiftfactors.Specifically,whenconsideringyieldsonvarioussovereignbonds,ourapproachconfirmsanadditionalsovereignriskfactors.Includingmoredatafromriskyassets,suchascorporatebondspreads,stockprices,stockmarketvolatility,interestrateuncer-tainty,andtheEUR/USDexchangerate,uncoverfurtherriskdimensionsthatsegmentintosovereignrisk,policyuncertainty,andcorporaterisk.Wesubsequentlymodelthefinancialpropagationofthesefactors.
ECBWorkingPaperSeriesNo29943
Thesampleperiod(spanningfrom2002untillate2023)coversdifferentphasesofmonetarypolicyincludingthequiescentpre-GFCperiod,theGFC,thesovereigndebtcrisis,thesubsequentperiodinwhichpolicyinterestrateswereconstrainedbytheireffectivelowerbound,theCovid-19pandemic,andthepost-pandemicinflationsurge.WefindthatdifferentECBpolicyinstrumentshaveconsistentlyimpactedmedium-to-long-termmaturities,bothbeforeandaftertheGFCandbeforetheformaladoptionofforwardguidancein2013.However,theinfluenceofmonetarypolicyonriskyassets,particularlysovereignbondyieldspreadsandriskappetite,becamemoreprominentsincetheGFC.
OurapproachdepartsfromtraditionalmethodsofusingeconomicassumptionsbyemployingtheVarimaxrotationtechnique.Thismethodleveragesexcesskurtosis,asta-tisticalpropertyindicatingthepresenceofstrongoutliersinthedistributionofassetpriceresponsestopolicyannouncements,andthateachpolicyinstrumentinfluencesadistinctsubsetofassets,thusensuringinterpretabilityandsparsity.Inthiscontext,outliersareafeature,notadrawback.Whilemostmonetarypolicysurprisesaresmallandcentredaroundzero,largeannouncementeffectsareespeciallyinformativeforidentification.
Thesefindingshavesignificantimplicationsforcentralbankpolicydecisions.Bydemonstratingthattraditionalmonetarypolicyfactorscanbeidentifiedusingapurelystatisticalapproach,weprovidearobustmethodforpolicymakerstogaindeeperinsightsintohowpolicyinstrumentsworkandhowtodeploythemmosteffectively.
Additionally,theprominenceofthedetectedrisk-shiftdimensionfortheeuroareaenrichestheunderstandingofhowmonetarypolicyinstrumentswork.Itsuggeststhatcentralbanksneedtoaccountforbroadermarketconditions,beyondtraditionalrisk-freeassets,tofullyunderstandthetransmissionofmonetarypolicy.
Weshowthatcommunication,evenifnotconsideredanexplicitelementofforwardguidance,hasapowerfulandpersistentfinancialimpact.Inaddition,communicationandassetpurchasestransmitstronglyalongariskdimension,achannelthatintheeuroareaappearstodominatea‘central-bankinformation’impact(astrongfinancialimpactfromthecentralbank’spublicassessmentofthestateoftheeconomy),ratherthancommunicationaboutpolicyinstruments.
Inconclusion,ournovelapproachoffersastatisticallyvalidated,comprehensiveviewofthemulti-dimensionaleffectsofmonetarypolicy.Itunderscorestheimportanceofcon-sideringawiderangeofassetpriceresponsesandprovidesvaluableinsightsfordesigningmonetarypolicyandmonetarypolicycommunication.
ECBWorkingPaperSeriesNo29944
1Introduction
Inthewakeoftheglobalfinancialcrisis(GFC),centralbankshavedeployednovelpolicyinstruments,whichhavebeenaffectingassetpricesinwaysdifferentfromthetraditionalshort-terminterestrateinstrument.Intheeuroarea,theEuropeanCentralBank(ECB)useddifferentformsofforwardguidanceoninterestratesandassetpurchasestolowerlong-terminterestratesandattenuatesovereignbondmarketfragmentation,therebyeas-ingfinancingconditionsmorebroadly.Conversely,centralbankstightenedmonetarypolicyinresponsetothepost-pandemicinflationsurge,whileseekingtoguideexpecta-tionsaboutthepaceandextentofincreasesinpolicyrates.Thiscommunicationefforthascontributedtocontainexpectationerrorsaboutthenear-termcourseofmonetarypolicydecisions,butatthesametimealsogeneratedhistoricallylargeadjustmentsinlonger-termyields.Theseexamplesshowthattheimpactofdifferentmonetarypolicyinstrumentscanbeconcentratedinspecificassetpricesegments,pointingtomonetarypolicyworkingalongmultipleanddistinctdimensions.
Measuringsuchmulti-dimensionaleffectsofmonetarypolicyatdifferentmaturityhorizonsfromhigh-frequencyassetpricemovementsaroundpolicyannouncementshasbeenprominentlyproposedby
G¨urkaynaketal.
(2005),followingtheseminalpaperby
Kuttner
(2001)whofocusedonsingle-dimensionmeasuresofmonetarypolicyusingshort
-termyields.
Inthispaperweadoptanovel,agnosticapproachconstructingmulti-dimensionalmon-etarypolicyindicatorsfromhigh-frequencyassetpricechangesfollowingECB’smonetarypolicyannouncements,relyingonstatisticalpropertiesforidentification.Asopposedtotheestablishedliterature,whichreliesonstructuralassumptionsinrotatingprincipalcomponentsincross-asset-priceadjustments,weemployVarimaxrotation.Thisapproachleveragesexcesskurtosisandsparsityintheimpactofpolicyinstrumentswithoutusingeconomicrestrictions.
UsingVarimaxtoidentifydifferentdimensionsofmonetarypolicyisanaturalchoice,giventhatmonetaryannouncementsinducehigh-frequencychangesinassetpriceschar-acterisedbytwokeyfeatures.First,theimpactofmonetarypolicyinstrumentsisusuallyconcentratedwithinspecificdimensions,meaningthatcertainassetsegmentsexperiencemorepronouncedresponsescomparedtoothers.Second,thesehigh-frequencychangesinassetpricesdonotfollowanormaldistribution.AscanbeseeninFigure
1
,inmostcases
ECBWorkingPaperSeriesNo29945
theresponsesaresmall,butininstancesofsignificantmonetarypolicyannouncements,assetpriceresponsesaresubstantial,makingtheirdistributionfat-tailed(see
Jaroci´nski,
2024
).
WeshowthatapplyingVarimaxrotationtorisk-freeyieldsuncoversthesamepolicyfactors–target,path,andQuantitativeeasing(QE)–aspreviouslyidentifiedin
Altavilla
etal.
(2019)andotherstudies,statisticallyvalidatingtheirstructuralidentificationap
-proachwithinthisspecificsetofassets.However,whenaddingfurtherinformationfromriskyassets,likesovereignbonds,corporatebondspreads,stockprices,stockmarketvolatility,interestrateuncertainty,andtheEUR/USDexchangerate,wefinditmorechallengingtodistinguishforwardguidanceandQEdimensionsandinsteadidentifyafurtherrisk-shiftdimensionthatcanbesegmentedintothesovereignriskfactorandinadditionapolicyuncertaintyandacorporateriskfactors.
Oursample,spanningfrom2002untillate2023,capturesdistinctperiodsintheuseofmonetarypolicyinstruments.WeshowthattheECB’smonetarypolicyaffectedmedium-to-longertermmaturitiesintheperiodbeforetheGFCasmuchasitdidsincetheformaladoptionofforwardguidanceasof2013,andalsomeasurablybeforethedeploymentofassetpurchaseprogrammes.Atthesametime,theimpactofmonetarypolicyinstrumentsonriskyassets,inparticularsovereignbondyields,hasgainedprominenceinthecontextoftheGFCanduntilveryrecently.Acrossallinstrumentdimensions,monetarypolicyeffectshavebeensignificantduringtherecentinflationsurge.Duringthisperiod,theECBtightenedmonetarypolicybyraisinginterestratesandgraduallyreducingitsassetportfoliothroughquantitativetightening.
Surprisingly,despitebeingaconspicuousaspectofthedata,excesskurtosishasbeenlargelyoverlookedintheextensiveliteratureidentifyingmonetarypolicyfromassetprices.Theliteratureextensivelyreliesonstructuralassumptionsinrotatingprincipalcom-ponentstoextractthekeydimensionsinsurprisesobservedfromfinancialassetpriceresponsessurroundingmonetarypolicyevents
.1
Principalcomponentsareeffectiveinexplainingmostofthevarianceinassetpricesaroundpolicyannouncements,buttheyareessentiallystatisticalanddonotdirectlyrepresenttheunderlyingstructuraleconomicshocksresponsibleforthevariationsinassetpricesaroundmonetarypolicyannounce-ments.Similartoreduced-formshocksinvectorautoregression(VAR)literature,they
1Seee.g.,
Brandetal.
(2010
);
Altavillaetal.
(2019
);
Mottoandzen
(2022
)fortheeuroarea,orig-
inatingfrom
G¨urkaynaketal.
(2005
)fortheUS.Thesameappliestothesingle-dimensionindicatororiginatingfrom
Kuttner
(2001
).
ECBWorkingPaperSeriesNo29946
Figure1:ValueofthehighfrequencychangeinbasispointsinselectedassetsaroundECBGoverningCouncilmeetings,basedondatafrom
Altavillaetal.
(2019)
.
OIS3M
OIS10Y
Italian10Y−German10Y
15
10
10
525
5
0
0
−50
−5
−10
−10
−25
200220062010201420182022200220062010201420182022200220062010201420182022
Sampleperiod:January2002−October2023.
embodyacombinationofunderlyingstructuralshocks.
Toprovideastructuralinterpretationoftheprincipalcomponents,studiesexploringthemultipledimensionsofmonetarypolicysurpriseshavetypicallyimposedidentifyingrestrictionsbasedoneconomictheoryforrotatingtheprincipalcomponents.However,sinceanyrotationoftheprincipalcomponentsisobservationallyequivalentinthedata,thecredibilityoftheresultsdependsfullyonhowbelievablethea-priorieconomicas-sumptionsare.
ByusingVarimax,weemployastraightforwardstatisticalapproach,capitalisingonexcesskurtosisinassetpricedatatoestimatemonetarypolicyindicatorswithoutrelyingona-priorieconomicassumptions.Asconventionalintheliterature,wefirstextractprincipalcomponentsfromhigh-frequencyassetpricechangestopolicynews.Inasecondstep,insteadofusingstructuralassumptionstorotateprincipalcomponents,weutilisetheVarimaxrotationofprincipalcomponents,atechniqueintroducedby
Kaiser
(1958)
andwidelyappliedacrossvariousacademicfields(withthepaperaccumulatingmorethantenthousandcitationsonGoogleScholar).Wereconstructstructuralfactors,basedoneconomicassumptions,todemonstratethatconventionalmonetarypolicyfactorsbasedoneconomicrestrictionscanemergefromanapproachthatsolelyconsidersthepresenceofsignificanttailsinthereactionsofnumerousassetprices,withoutimposinganyeconomicrestrictionslinkedtospecificpolicyinstruments.
TheVarimaxrotationdistinguishesitselfbyrotatingfactorstoachievesparsityandinterpretability.Ittakesadvantageoftheleptokurticdistributionandconcentrationof
ECBWorkingPaperSeriesNo29947
responsesinspecificassetsegments.Inourcontext,theobjectiveoftherotationistouncovermonetarypolicyfactorswithoutimposingeconomicassumptionsonitsstructure.Itaimstomaximisethevarianceofthesquaredloadingsoffactorsacrossassetswhilemaintainingorthogonality.Thegoalistoattributeeachfactortoassmallasubsetofassetsaspossible,havinginmindtheideaofsparsity,meaningthateachfactorprimarilyinfluencesasubsetofthevariables.Inourspecificsetting,thisobjectiveimpliesthateachpolicyinstrumentaffectsadistinctpartoftheassetpricespectrum.Thehigherkurtosisinthedata,thebetteritenhancestheidentificationofthemostcrucialandinterpretablefactors.
Jaroci´nski
(2024)wasthefirsttoexploitthesecrucialstatisticalfeatures,estimat
-ingindependentandinterpretablestudent-t-distributedfactorsthatdriveassetpricere-sponsestomonetarypolicyannouncementsbytheFederalReserveintheUS.
Jaroci´nski
(2024)showsthathisresultsalignwiththoseobtainedidentifyingfourfactorsbasedon
economicassumptions.Unliketheapproachtakenby
Jaroci´nski
(2024),Varimaxdoes
notdependondistributionalassumptions.Italignsmorecloselywiththetraditionalmethodofobtainingprincipalcomponentsfromalargesetofassetpricesandrotatingthem.However,thereisananalogybetween
Jaroci´nski
(2024)’sapproachandVarimax:
intheabsenceoffattails,asisthecasewhendataarenormallydistributed,thelikelihoodfunctionbecomesflat.Insuchcases,theVarimaxapproachalsolacksstatisticalpowertoidentifyunderlyingrotationoftheprincipalcomponentthatgeneratesthedata.
Themaincontributionofourpaperisthefollowing:First,focussingonhigh-frequencychangesinrisk-freeassetsouralternativestatisticalapproachsubstantiallyconfirmsthepresenceandcharacteristicsofmonetarypolicyindicatorscommonlyidentifiedthroughstructuralmethods.Intheeuroarea,usingabaselinemodelwithsevenrisk-freerates(1-monthto10-year)and10-yearsovereignyieldsfromthefourlargesteconomies,fourfactorsnaturallyemerge.ThesefactorssupportevidenceofECBpolicydimensionsviatheinterestrate‘target’,‘path’forwardguidance,‘QE’,and‘sovereignrisk’(similarto
Altavillaetal.,
2019;
Mottoandzen,
2022
).However,wedonotfindstatisticalsupport
forcentralbankmacro-informationshocksintheeuroarea(identifiedby
Nakamuraand
Steinsson,
2018;
Jaroci´nskiandKaradi,
2022;
Miranda-AgrippinoandRicco,
2021,among
others,fortheUS).Second,expandingthesetofassetpriceswithvariablescapturinguncertaintyaboutmonetarypolicyandriskappetiterevealsevidenceofarisk-shiftfactor(asrecentlydocumentedby
CieslakandSchrimpf,
2019;
CieslakandPang,
2021;
Kroencke
ECBWorkingPaperSeriesNo29948
etal.,
2021;
Baueretal.,
2023
,fortheUS).InthisdatasetVarimaxnolongerproducesevidenceofseparateforward-guidanceandQEdimensions,butonlyonecorrespondingfactorloadingintomedium-tolonger-termrisk-freeyields.Thirdly,weinvestigatethefinancialtransmissionofpolicyindicatorsidentifiedbothwiththebaselineandwitharisk-extendedsetoffactors.Weshowthatthereissignificantevidenceofmonetarypolicytransmittingthroughrisk-takingwhenconsideringtheextendedsetofassetpriceresponsestopolicyannouncements.
Thereminderofthepaperisorganisedasfollows.Section
2
providesanoverviewofthemethodologiesforinferringmulti-dimensionalmonetarypolicyindicatorsbyusinghigh-frequencyassetpricemovements.Section
3
outlinestheconventionalapproachintheliterature,whileSection
4
introducestheVarimaxapproachforidentifyingmonetarypolicyindicators.Section
5
introducesadditionaldimensionsofmonetarypolicysurprisesusingVarimaxbasedonanextendedsetofassets.Section
6
presentsevidenceonthetransmissionofbothbaselineandextendedmonetarypolicydimensionstoselectedassetclassesandthepersistenceoftheireffects.Finally,Section
7
concludes.
2Identifyingmulti-dimensionalindicatorsofmonetarypol-
icysurprisesfromhigh-frequencyassetpricemovements
Inthissection,weprovideanoverviewofthemethodologiesusedtoinferthedimensionsofmonetarypolicysurprisesembeddedinhigh-frequencyassetpricemovementsaroundpolicydecisions.Wecollecthigh-frequencychangesinnseriesofassetpricesaroundT
monetarypolicymeetingsoftheECB’sGoverningCouncilinamatrixX.Westan-T×n
dardiseeachcolumntohavemean0andstandarddeviation1
.2
Wethenuseprincipal
componentstodecomposeXintokfactorsasX=FΛ+η,whereηisaresidual,
T×nT×kk×nT×n
andthecolumnsofFareorthogonaltoeachother,aswellastherowsofΛ.Fornow,thisprocedureispurelystatistical,anditmaximiseshowmucheachprincipalcomponent
2Inthis,wealsodeviatefrompaperssuchas
Altavillaetal.
(2019
)and
Mottoandzen
(2022
)for
theeuroarea,butnotfrom
Swanson
(2021
)fortheUS.Choosingwhethertostandardisetheinputdataaffectstheresults.SincethefirststepistoextractprincipalcomponentsfromX,standardisingallthecolumnsisequivalenttogivingeachcolumnthesameimportance.Notstandardisingimpliesthattheprincipalcomponentsattempttoexplainmoreofthesystematicvariationintheassetswithmorevolatilityintheirunitofmeasure.Thisaspectbecomesmoreimportantonceabroadersetofassetsisconsidered.Forexample,in
Altavillaetal.
(2019
),onlyrisk-freeyieldsareincluded.Inourpaper,wealsoincludesovereignyields,someofwhicharesignificantlymorevolatilethanrisk-freerates(seeTable
2
),aswellasotherassetswhicharemeasuredindifferentscales(e.g.,equityreturnsandequitymarketvolatility).Inthiscase,standardisingthechangesbecomesanaturalapproachalsotoavoidcomparingmovementsinassetswithdifferentunits.
ECBWorkingPaperSeriesNo29949
canexplainofthevarianceofthecolumnsofmatrixX.
Beyondsimplyprovidingastatisticalsummaryoftheassetpriceresponsestomone-tarypolicynews,weareinterestedinrotatingfactorstomaketheminterpretableintermsofthetypeofnewsassociatedtospecificmonetarypolicyinstrumentsorkeydimensionsofmonetarypolicytransmission.Noticethat,foranyorthonormalmatrix(i.e.asquare
matrixwhereallthecolumnshaveunitlengthandareorthogonal)U,wecanrotatek×k
principalcomponentsbyrewritingFΛasFUU′Λ=whilemaintainingthesamefit
andresiduals
.3
MultiplyingtheprincipalcomponentsbyarotationmatrixUisobserva-tionallyequivalenttodoingitwithanyotherorthonormalmatrix,i.e.,thereisaninfinitenumberofdatageneratingprocessesthatareequallycompatiblewiththeobserveddata.Toidentifytheunderlyingstructuraldriversofthedataandtheireconomicinterpreta-tion,weneedtoimposeadditionalassumptionstorestrictor,morecommonly,uniquelyidentifyarotationmatrixthatcharacterisesthestructuraldatageneratingprocess.Thischallengeisanalogoustothedifficultyofidentifyingstructuralshocksfromreducedformresidualsinvectorautoregressions.
3Conventionalapproach:structuralidentificationbased
oneconomicassumptions
Sofar,theliteraturehaslargelymeasureddifferentdimensionsofmonetarypolicybyrelyingonidentifyingassumptionstoexplaincross-assetpricemovementsaroundmone-tarypolicyevents.Themostcommonapproachinthemonetarypolicyfactorsliterature(e.g.,
G¨urkaynaketal.,
2005;
Brandetal.,
2010;
Altavillaetal.,
2019;
Swanson,
2021;
Mottoandzen,
2022
)istofindamatrixUthatimposesidentifyingrestrictionsbased
oneconomictheory.Commonapproachesincludeimposingzerorestrictions(indicatingthatarotatedprincipalcomponent,representingastructuralshock,doesnotaffectaspe-cificasset),signrestrictions(e.g.,indicatingthatcertainassetsmustmoveinaspecificdirectioninresponsetoashock),andapplyingvarianceminimisation(e.g.,ensuringthatfactorsrepresentingtheeffectsofassetpurchaseshavelowvariancebeforetheirofficial 3NotethatifUisorthonormal,thenU−1=U′.Whenextractingprincipalcomponentsfromadataset,thesolutionyieldsasetoforthogonalprincipalcomponentsF,andasetoforthogonalloadings
Λ.However,atmostonlyoneofthesepropertiescanberetainedafterrotation,asexplainedby
Jolliffe
(1995
).Ineconomicterms,thisresultimplieswemustassumethateithertheunderlyingdriversofmonetarypolicysurpriseshaveorthogonalimpactsontheyieldcurve,buttheiractivationiscorrelated,orthattheyareactivatedindependentlybuthavecorrelatedimpactsonfinancialassets.Inthispaper,wehavechosenthelatter,inlinewiththeusualassumptionthatstructuralshocksshouldbeorthogonal.
ECBWorkingPaperSeriesNo299410
introduction).
Weintendtoextractandidentifymulti-dimensionalindicatorsofmonetarypolicysurprisesfortheeuroareabasedonhigh-frequencycross-assetpricemovements.Thereby,theidentificationstrategyfollowseconomicreasoninghowdifferentpolicyinstrumentsaffectspecificassetprices,takingintoconsiderationthespecificroleofsovereignriskin
acurrencyunion,asdiscussedin
Mottoandzen
(2022),
MiraGodinho
(2021),
Wright
(2019)
.
WeusetheEuroAreaMonetaryPolicyDatabase(EA-MPD)of
Altavillaetal.
(2019),
updateduntilOctober2023.Thedatabasecontainsthechangeinacross-sectionofassetpricesaroundECBGoverningCouncilmeetingsinthreewindows:aroundthepressrelease,aroundthepressconference,andafulleventwindowcoveringtheperiodfrombeforethepressreleasetoafterthepressconference.Whileuntil2016theECBwouldannouncenon-standardmeasuresonlyinthepressconference,itisnowacommonpracticetoannouncechangesinforwardguidanceandassetpurchasesalreadyinthepressrelease
.4
Forthisreason,wedepartfromotherpapersintheeuroareamonetarypolicysurprises
literature,suchas
Altavillaetal.
(2019)and
Mottoandzen
(2022),andusethefull
eventwindow.
Weuseabaselinesetofassetscoveringinterestratesfrom1
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 土遗址文物修复师岗前内部控制考核试卷含答案
- 呼叫中心服务员操作水平模拟考核试卷含答案
- 电力通信运维员创新应用模拟考核试卷含答案
- 自行车装配工安全规程知识考核试卷含答案
- 作物制种工安全生产意识模拟考核试卷含答案
- 工程机械租赁业务员道德能力考核试卷含答案
- 桥梁安全文明施工培训
- 老年人日常生活用品领取制度
- 桥式起重吊装作业培训
- 酒店客房服务质量标准与监督制度
- GB/T 46886-2025智能检测装备通用技术要求
- 护理护理科研与论文写作
- 2025年健康体检中心服务与质量管理手册
- 2025-2030中国骆驼市场前景规划与投资运作模式分析研究报告
- 2026中国电信四川公用信息产业有限责任公司社会成熟人才招聘备考题库及完整答案详解一套
- 钢结构玻璃雨棚安装施工方案
- 鄂尔多斯辅警考试题型及答案
- 2024-2030年中国桉叶(油)素市场专题研究及市场前景预测评估报告
- 摄像机基础知识摄像机基础知识
- 齿轨卡轨车资料
- 二代测序NGS培训班课件 4肖艳群-NGS实验室设置及质量控制2017.10.15福州培训班
评论
0/150
提交评论