版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省嘉峪关市一中2023-2024学年高考冲刺预测卷(六)数学试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知数列为等差数列,为其前项和,,则()A. B. C. D.2.为得到y=sin(2x-πA.向左平移π3个单位B.向左平移πC.向右平移π3个单位D.向右平移π3.设函数定义域为全体实数,令.有以下6个论断:①是奇函数时,是奇函数;②是偶函数时,是奇函数;③是偶函数时,是偶函数;④是奇函数时,是偶函数⑤是偶函数;⑥对任意的实数,.那么正确论断的编号是()A.③④ B.①②⑥ C.③④⑥ D.③④⑤4.记集合和集合表示的平面区域分别是和,若在区域内任取一点,则该点落在区域的概率为()A. B. C. D.5.数列满足:,则数列前项的和为A. B. C. D.6.已知数列对任意的有成立,若,则等于()A. B. C. D.7.若均为任意实数,且,则的最小值为()A. B. C. D.8.设函数在上可导,其导函数为,若函数在处取得极大值,则函数的图象可能是()A. B.C. D.9.等差数列中,已知,且,则数列的前项和中最小的是()A.或 B. C. D.10.已知集合,集合,则等于()A. B.C. D.11.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是A. B.C. D.12.函数的图象的大致形状是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,已知圆内接四边形ABCD,其中,,,,则__________.14.已知多项式的各项系数之和为32,则展开式中含项的系数为______.15.已知函数f(x)=axlnx﹣bx(a,b∈R)在点(e,f(e))处的切线方程为y=3x﹣e,则a+b=_____.16.在边长为2的正三角形中,,则的取值范围为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)第十三届全国人大常委会第十一次会议审议的《固体废物污染环境防治法(修订草案)》中,提出推行生活垃圾分类制度,这是生活垃圾分类首次被纳入国家立法中.为了解某城市居民的垃圾分类意识与政府相关法规宣传普及的关系,对某试点社区抽取户居民进行调查,得到如下的列联表.分类意识强分类意识弱合计试点后试点前合计已知在抽取的户居民中随机抽取户,抽到分类意识强的概率为.(1)请将上面的列联表补充完整,并判断是否有的把握认为居民分类意识的强弱与政府宣传普及工作有关?说明你的理由;(2)已知在试点前分类意识强的户居民中,有户自觉垃圾分类在年以上,现在从试点前分类意识强的户居民中,随机选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,求分布列及数学期望.参考公式:,其中.下面的临界值表仅供参考18.(12分)平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,取相同的单位长度建立极坐标系,曲线的极坐标方程为,直线的极坐标方程为,点.(1)求曲线的极坐标方程与直线的直角坐标方程;(2)若直线与曲线交于点,曲线与曲线交于点,求的面积.19.(12分)在中,内角A,B,C的对边分别为a,b,c,且满足.(1)求B;(2)若,AD为BC边上的中线,当的面积取得最大值时,求AD的长.20.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),以原点为极点,轴的非负半轴为极轴,建立极坐标系,曲线的极坐标方程为.(1)求曲线的极坐标方程以及曲线的直角坐标方程;(2)若直线与曲线、曲线在第一象限交于两点,且,点的坐标为,求的面积.21.(12分)已知函数.(1)当时,求的单调区间;(2)若函数有两个极值点,,且,为的导函数,设,求的取值范围,并求取到最小值时所对应的的值.22.(10分)设抛物线过点.(1)求抛物线C的方程;(2)F是抛物线C的焦点,过焦点的直线与抛物线交于A,B两点,若,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解析】
利用等差数列的性质求出的值,然后利用等差数列求和公式以及等差中项的性质可求出的值.【详解】由等差数列的性质可得,.故选:B.【点睛】本题考查等差数列基本性质的应用,同时也考查了等差数列求和,考查计算能力,属于基础题.2、D【解析】试题分析:因为,所以为得到y=sin(2x-π3)的图象,只需要将考点:三角函数的图像变换.3、A【解析】
根据函数奇偶性的定义即可判断函数的奇偶性并证明.【详解】当是偶函数,则,所以,所以是偶函数;当是奇函数时,则,所以,所以是偶函数;当为非奇非偶函数时,例如:,则,,此时,故⑥错误;故③④正确.故选:A【点睛】本题考查了函数的奇偶性定义,掌握奇偶性定义是解题的关键,属于基础题.4、C【解析】
据题意可知,是与面积有关的几何概率,要求落在区域内的概率,只要求、所表示区域的面积,然后代入概率公式,计算即可得答案.【详解】根据题意可得集合所表示的区域即为如图所表示:的圆及内部的平面区域,面积为,集合,,表示的平面区域即为图中的,,根据几何概率的计算公式可得,故选:C.【点睛】本题主要考查了几何概率的计算,本题是与面积有关的几何概率模型.解决本题的关键是要准确求出两区域的面积.5、A【解析】分析:通过对an﹣an+1=2anan+1变形可知,进而可知,利用裂项相消法求和即可.详解:∵,∴,又∵=5,∴,即,∴,∴数列前项的和为,故选A.点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1);(2);(3);(4);此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误.6、B【解析】
观察已知条件,对进行化简,运用累加法和裂项法求出结果.【详解】已知,则,所以有,,,,两边同时相加得,又因为,所以.故选:【点睛】本题考查了求数列某一项的值,运用了累加法和裂项法,遇到形如时就可以采用裂项法进行求和,需要掌握数列中的方法,并能熟练运用对应方法求解.7、D【解析】
该题可以看做是圆上的动点到曲线上的动点的距离的平方的最小值问题,可以转化为圆心到曲线上的动点的距离减去半径的平方的最值问题,结合图形,可以断定那个点应该满足与圆心的连线与曲线在该点的切线垂直的问题来解决,从而求得切点坐标,即满足条件的点,代入求得结果.【详解】由题意可得,其结果应为曲线上的点与以为圆心,以为半径的圆上的点的距离的平方的最小值,可以求曲线上的点与圆心的距离的最小值,在曲线上取一点,曲线有在点M处的切线的斜率为,从而有,即,整理得,解得,所以点满足条件,其到圆心的距离为,故其结果为,故选D.【点睛】本题考查函数在一点处切线斜率的应用,考查圆的程,两条直线垂直的斜率关系,属中档题.8、B【解析】
由题意首先确定导函数的符号,然后结合题意确定函数在区间和处函数的特征即可确定函数图像.【详解】函数在上可导,其导函数为,且函数在处取得极大值,当时,;当时,;当时,.时,,时,,当或时,;当时,.故选:【点睛】根据函数取得极大值,判断导函数在极值点附近左侧为正,右侧为负,由正负情况讨论图像可能成立的选项,是判断图像问题常见方法,有一定难度.9、C【解析】
设公差为,则由题意可得,解得,可得.令
,可得
当时,,当时,,由此可得数列前项和中最小的.【详解】解:等差数列中,已知,且,设公差为,
则,解得
,.
令
,可得,故当时,,当时,,
故数列前项和中最小的是.故选:C.【点睛】本题主要考查等差数列的性质,等差数列的通项公式的应用,属于中档题.10、B【解析】
求出中不等式的解集确定出集合,之后求得.【详解】由,所以,故选:B.【点睛】该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.11、B【解析】
依照偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x),且定义域关于原点对称,a﹣1=﹣2a,即可得解.【详解】根据偶函数的定义域关于原点对称,且f(x)是定义在[a–1,2a]上的偶函数,得a–1=–2a,解得a=,又f(–x)=f(x),∴b=0,∴a+b=.故选B.【点睛】本题考查偶函数的定义,对定义域内的任意实数,f(﹣x)=f(x);奇函数和偶函数的定义域必然关于原点对称,定义域区间两个端点互为相反数.12、B【解析】
根据函数奇偶性,可排除D;求得及,由导函数符号可判断在上单调递增,即可排除AC选项.【详解】函数易知为奇函数,故排除D.又,易知当时,;又当时,,故在上单调递增,所以,综上,时,,即单调递增.又为奇函数,所以在上单调递增,故排除A,C.故选:B【点睛】本题考查了根据函数解析式判断函数图象,导函数性质与函数图象关系,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由题意可知,,在和中,利用余弦定理建立方程求,同理求,求,代入求值.【详解】由圆内接四边形的性质可得,.连接BD,在中,有.在中,.所以,则,所以.连接AC,同理可得,所以.所以.故答案为:【点睛】本题考查余弦定理解三角形,同角三角函数基本关系,意在考查方程思想,计算能力,属于中档题型,本题的关键是熟悉圆内接四边形的性质,对角互补.14、【解析】
令可得各项系数和为,得出,根据第一个因式展开式的常数项与第二个因式的展开式含一次项的积与第一个因式展开式含x的一次项与第二个因式常数项的积的和即为展开式中含项,可得解.【详解】令,则得,解得,所以展开式中含项为:,故答案为:【点睛】本题主要考查了二项展开式的系数和,二项展开式特定项,赋值法,属于中档题.15、0【解析】
由题意,列方程组可求,即求.【详解】∵在点处的切线方程为,,代入得①.又②.联立①②解得:..故答案为:0.【点睛】本题考查导数的几何意义,属于基础题.16、【解析】
建立直角坐标系,依题意可求得,而,,,故可得,且,由此构造函数,,利用二次函数的性质即可求得取值范围.【详解】建立如图所示的平面直角坐标系,则,,,设,,,,根据,即,,,则,,即,,,则,,所以,,,,,,且,故,设,,易知二次函数的对称轴为,故函数在,上的最大值为,最小值为,故的取值范围为.故答案为:.【点睛】本题考查平面向量数量积的坐标运算,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力,求解时注意通过设元、消元,将问题转化为元二次函数的值域问题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有的把握认为居民分类意识强与政府宣传普及工作有很大关系.见解析(2)分布列见解析,期望为1.【解析】
(1)由在抽取的户居民中随机抽取户,抽到分类意识强的概率为可得列联表,然后计算后可得结论;(2)由已知的取值分别为,分别计算概率得分布列,由公式计算出期望.【详解】解:(1)根据在抽取的户居民中随机抽取户,到分类意识强的概率为,可得分类意识强的有户,故可得列联表如下:分类意识强分类意识弱合计试点后试点前合计因为的观测值,所以有的把握认为居民分类意识强与政府宣传普及工作有很大关系.(2)现在从试点前分类意识强的户居民中,选出户进行自觉垃圾分类年限的调查,记选出自觉垃圾分类年限在年以上的户数为,则0,1,2,3,故,,,,则的分布列为.【点睛】本题考查独立性检验,考查随机变量的概率分布列和数学期望.考查学生的数据处理能力和运算求解能力.18、(1).(2)【解析】
(1)根据题意代入公式化简即可得到.(2)联立极坐标方程通过极坐标的几何意义求解,再求点到直线的距离即可算出三角形面积.【详解】解:(1)曲线,即.∴.曲线的极坐标方程为.直线的极坐标方程为,即,∴直线的直角坐标方程为.(2)设,,∴,解得.又,∴(舍去).∴.点到直线的距离为,∴的面积为.【点睛】此题考查参数方程,极坐标,直角坐标之间相互转化,注意参数方程只能先转化为直角坐标再转化为极坐标,属于较易题目.19、(1);(2).【解析】
(1)利用正弦定理及可得,从而得到;(2)在中,利用余弦定可得,,而,故当时,的面积取得最大值,此时,,在中,再利用余弦定理即可解决.【详解】(1)由正弦定理及已知得,结合,得,因为,所以,由,得.(2)在中,由余弦定得,因为,所以,当且仅当时,的面积取得最大值,此时.在中,由余弦定理得.即.【点睛】本题考查正余弦定理解三角形,涉及到基本不等式求最值,考查学生的计算能力,是一道容易题.20、(1)的极坐标方程为,的直角坐标方程为(2)【解析】
(1)先把曲线的参数方程消参后,转化为普通方程,再利用求得极坐标方程.将,化为,再利用求得曲线的普通方程.(2)设直线的极角,代入,得,将代入,得,由,得,即,从而求得,,从而求得,再利用求解.【详解】(1)依题意,曲线,即,故,即.因为,故,即,即.(2)将代入,得,将代入,得,由,得,得,解得,则.又,故,故的面积.【点睛】本题考查极坐标方程与直角坐标方程、参数方程与普通方程的转化、极坐标的几何意义,还考查推理论
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 企业信息化与网络安全制度
- 企业绩效评估与奖惩制度
- 2026福建厦门市集美区滨海幼儿园非在编教职工招聘3人备考题库附答案
- 2026福建省连江国有林场招聘劳务派遣人员2人参考题库附答案
- 2026西安市灞桥区职业高级中学教师招聘参考题库附答案
- 2026贵州贵阳市城乡建设学校招聘兼职教师备考题库附答案
- 2026重庆中医药学院附属璧山医院(重庆市璧山区中医院)招聘37人参考题库附答案
- 2026陕西榆林市横山区石窑沟卫生院招聘4人参考题库附答案
- 2026青海泰丰先行锂能科技有限公司高端人才招聘40人备考题库附答案
- 中共南部县委组织部关于2025年南部县党政机关公开考调工作人员的(16人)备考题库附答案
- 建房框架结构合同范本
- 2025年宁波市数据局直属事业单位公开招聘工作人员笔试历年典型考题(历年真题考点)解题思路附带答案详解
- 民用无人机安全培训课件
- 广东省2026届高二上数学期末复习检测试题含解析
- 医务科科长年度述职报告课件
- 零缺陷培训教学课件
- 大仲马课件教学课件
- 2026年餐饮企业税务合规培训课件与发票管理风控方案
- 2025至2030尿素硝酸铵(UAN)行业产业运行态势及投资规划深度研究报告
- 集团公司年度经营状况分析报告
- 2025蜀道集团下属四川金通工程试验检测有限公司招聘18人考试参考题库附答案解析(夺冠)
评论
0/150
提交评论