专题25 化学反应原理综合题-平衡主线型-五年(2020-2024)高考化学真题分类汇编(解析版)_第1页
专题25 化学反应原理综合题-平衡主线型-五年(2020-2024)高考化学真题分类汇编(解析版)_第2页
专题25 化学反应原理综合题-平衡主线型-五年(2020-2024)高考化学真题分类汇编(解析版)_第3页
专题25 化学反应原理综合题-平衡主线型-五年(2020-2024)高考化学真题分类汇编(解析版)_第4页
专题25 化学反应原理综合题-平衡主线型-五年(2020-2024)高考化学真题分类汇编(解析版)_第5页
已阅读5页,还剩131页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024年高考真题化学试题PAGEPAGE2专题25化学反应原理综合题——平衡主线型考向五年考情(2020-2024)命题趋势平衡主线型化学反应原理综合题2024·全国甲卷2024·新课标卷2024·河北卷2024·山东卷2024·黑吉辽卷2024·湖北卷2024·安徽卷2023·全国乙卷2023·新课标卷2023·山东卷2023·福建卷2023·广东卷2023·浙江卷2023·湖北卷2023·湖南卷2023·辽宁卷2022·全国甲卷2022·全国乙卷2022·广东卷2022·湖南卷2022·山东卷2022·海南卷2022·福建卷2021·山东卷2021·浙江卷2021·全国乙卷2021·全国甲卷2020·新课标Ⅰ2020·新课标Ⅲ2020·山东卷2020·浙江卷化学反应原理综合题主要考查热化学、化学反应速率和化学平衡等主干理论知识,主要命题点有盖斯定律的应用、反应速率和化学平衡的分析、化学平衡常数的表达式书写与计算、反应条件的分析选择、生产生活中的实际应用等,试题常以填空、读图、作图、计算等形式呈现。试题一般以与生产、生活紧密联系的物质为背景材料命制组合题,各小题之间又有一定的独立性。主要考查学生的信息处理能力、学科内综合分析能力,应用反应原理解决生产实际中的具体问题,体现了“变化观念与平衡思想”的核心素养。在近几年的相关考题中,对单一因素影响的考查已经越来越少了,主要以“多因素影响”出现,考查学生的综合分析判断能力。以实际情景(场景)为背景,更能体现核心素养的要求。而在实际生产过程中,影响因素是多元化、多方位和多层次的。1.(2024·全国甲卷)甲烷转化为多碳化合物具有重要意义。一种将甲烷溴化再偶联为丙烯()的研究所获得的部分数据如下。回答下列问题:(1)已知如下热化学方程式:

计算反应的。(2)与反应生成,部分会进一步溴化。将和。通入密闭容器,平衡时,、与温度的关系见下图(假设反应后的含碳物质只有、和)。(i)图中的曲线是(填“a”或“b”)。(ii)时,的转化,。(iii)时,反应的平衡常数。(3)少量可提高生成的选择性。时,分别在有和无的条件下,将和,通入密闭容器,溴代甲烷的物质的量(n)随时间(t)的变化关系见下图。(i)在之间,有和无时的生成速率之比。(ii)从图中找出提高了选择性的证据:。(ⅲ)研究表明,参与反应的可能机理如下:①②③④⑤⑥根据上述机理,分析提高选择性的原因:。〖答案〗(1)-67(2)a80%7.810.92(3)(或3:2)5s以后有I2催化的CH2Br2的含量逐渐降低,有I2催化的CH3Br的含量陡然上升I2的投入消耗了部分CH2Br2,使得消耗的CH2Br2发生反应生成了CH3Br〖祥解〗根据盖斯定律计算化学反应热;根据影响化学反应速率的因素判断还行反应进行的方向从而判断曲线归属;根据反应前后的变化量计算转化率;根据平衡时各物质的物质的量计算平衡常数;根据一段时间内物质的含量变化计算速率并计算速率比;根据图示信息和反应机理判断合适的原因。〖解析〗(1)将第一个热化学方程式命名为①,将第二个热化学方程式命名为②。根据盖斯定律,将方程式①乘以3再加上方程式②,即①×3+②,故热化学方程式3CH4(g)+3Br2(g)=C3H6(g)+6HBr(g)的∆H=-29×3+20=-67kJ·mol-1。(2)(i)根据方程式①,升高温度,反应向吸热反应方向移动,升高温度,平衡逆向移动,CH4(g)的含量增多,CH3Br(g)的含量减少,故CH3Br的曲线为a;(ii)560℃时反应达平衡,剩余的CH4(g)的物质的量为1.6mmol,其转化率α=×100%=80%;若只发生一步反应,则生成6.4mmolCH3Br,但此时剩余CH3Br的物质的量为5.0mmol,说明还有1.4mmolCH3Br发生反应生成CH2Br2,则此时生成的HBr的物质的量n=6.4+1.4=7.8mmol;(iii)平衡时,反应中各组分的物质的量分别为n(CH3Br)=5.0mmol、n(Br2)=0.2mmol、n(CH2Br2)=1.4mmol、n(HBr)=7.8mmol,故该反应的平衡常数K===10.92。(3)(i)11~19s时,有I2的生成速率v==mmol·(L·s)-1,无I2的生成速率v==mmol·(L·s)-1。生成速率比==;(ii)从图中可以看出,大约4.5s以后有I2催化的CH2Br2的含量逐渐降低,有I2催化的CH3Br的含量陡然上升,因此,可以利用此变化判断I2提高了CH3Br的选择性;(iii)根据反应机理,I2的投入消耗了部分CH2Br2,同时也消耗了部分HBr,使得消耗的CH2Br2发生反应生成了CH3Br,提高了CH3Br的选择性。2.(2024·新课标卷)(四羰合镍,沸点43℃)可用于制备高纯镍,也是有机化合物羰基化反应的催化剂。回答下列问题:(1)Ni基态原子价电子的轨道表示式为。镍的晶胞结构类型与铜的相同,晶胞体积为,镍原子半径为。(2)结构如图甲所示,其中含有σ键的数目为,晶体的类型为。(3)在总压分别为0.10、0.50、1.0、2.0MPa下,Ni(s)和CO(g)反应达平衡时,体积分数x与温度的关系如图乙所示。反应的ΔH0(填“大于”或“小于”)。从热力学角度考虑,有利于的生成(写出两点)。、100℃时CO的平衡转化率α=,该温度下平衡常数。(4)对于同位素交换反应,20℃时反应物浓度随时间的变化关系为(k为反应速率常数),则反应一半所需时间(用k表示)。〖答案〗(1)(2)8分子晶体(3)小于降低温度、增大压强97.3%9000(4)〖解析〗(1)Ni为28号元素,其基态原子的核外电子排布式为,则其价电子轨道表示式为;铜晶胞示意图为,镍的晶胞结构类型与铜的相同,则镍原子半径为晶胞面对角线长度的,因为晶胞体积为,所以晶胞棱长为a,面对角线长度为,则镍原子半径为。(2)单键均为σ键,双键含有1个σ键和1个π键,三键含有1个σ键2个π键,由的结构可知,4个配体CO与中心原子Ni形成的4个配位键均为σ键,而每个配体CO中含有1个σ键2个π键,因此1个分子中含有8个σ键。的沸点很低,结合其结构可知该物质由分子构成,因此其晶体类型为分子晶体。(3)随着温度升高,平衡时的体积分数减小,说明温度升高平衡逆移,因此该反应的;该反应的正反应是气体总分子数减小的放热反应,因此降低温度和增大压强均有利于的生成;由上述分析知,温度相同时,增大压强平衡正向移动,对应的平衡体系中的体积分数增大,则压强:,即对应的压强是1.0MPa.由题图乙可知,、100℃条件下达到平衡时,CO和的物质的量分数分别为0.1、0.9,设初始投入的CO为4mol,反应生成的为xmol,可得三段式:,反应后总物质的量为:(4-3x)mol,根据阿伏加德罗定律,其他条件相同时,气体的体积分数即为其物质的量分数,因此有,解得,因此达到平衡时,CO的平衡转化率;气体的分压=总压强×该气体的物质的量分数,则该温度下的压强平衡常数。(4)由题给关系式可得,当反应一半时,即,,,则。3.(2024·河北卷)氯气是一种重要的基础化工原料,广泛应用于含氯化工产品的生产。硫酰氯及1,4-二(氯甲基)苯等可通过氯化反应制备。(1)硫酰氯常用作氯化剂和氯磺化剂,工业上制备原理如下:。①若正反应的活化能为,则逆反应的活化能(用含正的代数式表示)。②恒容密闭容器中按不同进料比充入和其,测定温度下体系达平衡时的(为体系初始压强,,P为体系平衡压强),结果如图。上图中温度由高到低的顺序为,判断依据为。M点的转化率为,温度下用分压表示的平衡常数。③下图曲线中能准确表示温度下随进料比变化的是(填序号)。(2)1,4-二(氯甲基)苯(D)是有机合成中的重要中间体,可由对二甲苯(X)的氯化反应合成。对二甲苯浅度氯化时反应过程为以上各反应的速率方程均可表示为,其中分别为各反应中对应反应物的浓度,k为速率常数(分别对应反应①~⑤)。某温度下,反应器中加入一定量的X,保持体系中氯气浓度恒定(反应体系体积变化忽略不计),测定不同时刻相关物质的浓度。已知该温度下,。①时,,且内,反应进行到时,。②时,,若产物T的含量可忽略不计,则此时后,随T的含量增加,(填“增大”“减小”或“不变”)。〖答案〗(1)该反应正反应放热,且气体分子数减小,反应正向进行时,容器内压强减小,从到平衡时增大,说明反应正向进行程度逐渐增大,对应温度逐渐降低0.03D(2)5.540.033增大〖解析〗(1)①根据反应热与活化能E正和E逆关系为正反应活化能-逆反应活化能可知,该反应的。②该反应的正反应为气体体积减小的反应,因此反应正向进行程度越大,平衡时容器内压强越小,即越大。从到,增大,说明反应正向进行程度逐渐增大,已知正反应为放热反应,则温度由到逐渐降低,即。由题图甲中M点可知,进料比为,平衡时,已知恒温恒容情况下,容器内气体物质的量之比等于压强之比,可据此列出“三段式”。可计算得,。③由题图甲中M点可知,进料比为2时,,结合“三段式”,以及时化学平衡常数可知,进料比为0.5时,也为,曲线D上存在(0.5,60)。本题也可以快解:根据“等效平衡”原理,该反应中和的化学计量数之比为,则和的进料比互为倒数(如2与0.5)时,相等。(2)①根据化学反应速率的计算公式时,,时,。②已知,又由题给反应速率方程推知,,则,即后。后,D和G转化为T的速率比为,G消耗得更快,则增大。4.(2024·山东卷)水煤气是的主要来源,研究对体系制的影响,涉及主要反应如下:回答列问题:(1)的焓变(用代数式表示)。(2)压力p下,体系达平衡后,图示温度范围内已完全反应,在温度时完全分解。气相中,和摩尔分数随温度的变化关系如图所示,则a线对应物种为(填化学式)。当温度高于时,随温度升高c线对应物种摩尔分数逐渐降低的原因是。(3)压力p下、温度为时,图示三种气体的摩尔分数分别为0.50,0.15,0.05,则反应的平衡常数;此时气体总物质的量为,则的物质的量为;若向平衡体系中通入少量,重新达平衡后,分压将(填“增大”“减小”或“不变”),将(填“增大”“减小”或“不变”)。〖答案〗(1)++(2)当温度高于T1,已完全分解,只发生反应Ⅱ,温度升高,反应Ⅱ逆向移动,所以的摩尔分数减小。(3)0.5不变不变〖解析〗(1)已知三个反应:Ⅰ.Ⅱ.Ⅲ.设目标反应为Ⅳ,根据盖斯定律,Ⅳ=Ⅰ+Ⅱ+Ⅲ,所以++。(2)图示温度范围内已完全反应,则反应Ⅰ已经进行完全,反应Ⅱ和Ⅲ均为放热反应,从开始到T1,温度不断升高,反应Ⅱ和Ⅲ逆向移动,依据反应Ⅱ,量减小,摩尔分数减小,量升高,摩尔分数,且二者摩尔分数变化斜率相同,所以a曲线代表的摩尔分数的变化,则c曲线代表的摩尔分数随温度的变化,开始到T1,的摩尔分数升高,说明在这段温度范围内,反应Ⅲ占主导,当温度高于T1,已完全分解,只发生反应Ⅱ,所以的摩尔分数减小。(3)①压力p下、温度为时,、、和摩尔分数分别为0.50、0.15、0.05,则H2O(g)的摩尔分数为:,则反应的平衡常数;②设起始状态1molC(s),xmolH2O(g),反应Ⅰ进行完全。则依据三段式:根据平衡时、、和摩尔分数分别为0.50、0.15、0.05,则有、、,解出,,则,而由于平衡时n(总)=4mol,则y=4,y=,则n(CaCO3)===0.5。③若向平衡体系中通入少量,重新达平衡后,反应的Kp=,温度不变,Kp不变,则分压不变;体系中增加了,若反应Ⅱ逆向移动,在CO2分压不变的前提下,CO、H2O的分压增大,H2分压减小,则反应Ⅱ的Kp将会发生变化,与事实不符,所以为了保证Ⅱ的Kp也不变,最终所有物质的分压均不变,即不变。5.(2024·黑吉辽卷)为实现氯资源循环利用,工业上采用催化氧化法处理废气:。将和分别以不同起始流速通入反应器中,在和下反应,通过检测流出气成分绘制转化率()曲线,如下图所示(较低流速下转化率可近似为平衡转化率)。回答下列问题:(1)0(填“>”或“<”);℃。(2)结合以下信息,可知的燃烧热。

(3)下列措施可提高M点转化率的是_______(填标号)A.增大的流速 B.将温度升高C.增大 D.使用更高效的催化剂(4)图中较高流速时,小于和,原因是。(5)设N点的转化率为平衡转化率,则该温度下反应的平衡常数(用平衡物质的量分数代替平衡浓度计算)(6)负载在上的催化活性高,稳定性强,和的晶体结构均可用下图表示,二者晶胞体积近似相等,与的密度比为1.66,则的相对原子质量为(精确至1)。〖答案〗(1)<360℃(2)-258.8(3)BD(4)流速过快,反应物分子来不及在催化剂表面接触而发生反应,导致转化率下降,同时,T3温度低,反应速率低,故单位时间内氯化氢的转化率低。(5)6(6)101〖解析〗(1)反应前后的气体分子数目在减小,所以该反应<0,该反应为放热反应,由于在流速较低时的转化率视为平衡转化率,所以在流速低的时候,温度越高,HCl的转化率越小,故T1代表的温度为440℃,T3为360℃。(2)表示氢气燃烧热的热化学方程式为④,设①,②,③,则,因此氢气的燃烧热-57.2kJ/mol-184.6kJ/mol-44kJ/mol=-258.8(3)A.增大HCl的流速,由图像可知,HCl的转化率在减小,不符合题意;B.M对应温度为360℃,由图像可知,升高温度,HCl的转化率增大,符合题意;C.增大n(HCl):n(O2),HCl的转化率减小,不符合题意;D.使用高效催化剂,可以增加该温度下的反应速率,使单位时间内HCl的转化率增加,符合题意;故选BD。(4)图中在较高流速下,T3温度下的转化率低于温度较高的T1和T2,主要是流速过快,反应物分子来不及在催化剂表面接触而发生反应,导致转化率下降,同时,T3温度低,反应速率低,故单位时间内氯化氢的转化率低。(5)由图像可知,N点HCl的平衡转化率为80%,设起始n(HCl)=n(O2)=4mol,可列出三段式则。(6)由于二者的晶体结构相似,体积近似相等,则其密度之比等于摩尔质量之比。故,则Ru的相对原子质量为101。6.(2024·湖北卷)用和焦炭为原料,经反应I、Ⅱ得到,再制备乙炔是我国科研人员提出的绿色环保新路线。反应I:反应Ⅱ:回答下列问题:(1)写出与水反应的化学方程式。(2)已知、(n是的化学计量系数)。反应、Ⅱ的与温度的关系曲线见图1。①反应在的。②保持不变,假定恒容容器中只发生反应I,达到平衡时,若将容器体积压缩到原来的,重新建立平衡后。(3)恒压容器中,焦炭与的物质的量之比为,为载气。和下,产率随时间的关系曲线依实验数据拟合得到图2(不考虑接触面积的影响)。①初始温度为,缓慢加热至时,实验表明已全部消耗,此时反应体系中含物种为。②下,反应速率的变化特点为,其原因是。〖答案〗(1)BaC2+2H2O→Ba(OH)2+HC≡CH↑(2)1016105105(3)BaO速率不变至BaC2产率接近100%容器中只有反应Ⅱ:BaO(s)+3C(s)BaC2(s)+CO(g),反应条件恒温1823K、恒压,且该反应只有CO为气态,据可知,CO的压强为定值,所以化学反应速率不变〖解析〗(1)Ba、Ca元素同主族,所以BaC2与水的反应和CaC2与水的反应相似,其反应的化学方程式为BaC2+2H2O→Ba(OH)2+HC≡CH↑;(2)①反应I+反应Ⅱ得BaCO3(s)+4C(s)BaC2(s)+3CO(g),所以其平衡常数K=KI×KⅡ=,由图1可知,1585K时KI=102.5,KⅡ=10-1.5,即=102.5×10-1.5=10,所以p3CO=10×(105pa)3=1016pa3,则Kp=p3CO=1016pa3;②由图1可知,1320K时反应I的KI=100=1,即KI==1,所以p2CO=(105pa)2,即pCO=105pa;③若将容器体积压缩到原来的,由于温度不变、平衡常数不变,重新建立平衡后pCO应不变,即pCO=105pa;(3)①由图2可知,1400K时,BaC2的产率为0,即没有BaC2,又实验表明BaBO3已全部消耗,所以此时反应体系中含Ba物种为BaO;②图像显示,1823K时BaC2的产率随时间由0开始呈直线增加到接近100%,说明该反应速率为一个定值,即速率保持不变;1400K时碳酸钡已全部消耗,此时反应体系的含钡物种只有氧化钡,即只有反应Ⅱ:BaO(s)+3C(s)BaC2(s)+CO(g),反应条件恒温1823K、恒压,且该反应只有CO为气态,据可知,CO的压强为定值,所以化学反应速率不变。7.(2024·安徽卷)乙烯是一种用途广泛的有机化工原料。由乙烷制乙烯的研究备受关注。回答下列问题:【乙烷制乙烯】(1)氧化脱氢反应:

计算:

(2)直接脱氢反应为,的平衡转化率与温度和压强的关系如图所示,则0(填“>”“<”或“=”)。结合下图。下列条件中,达到平衡时转化率最接近的是(填标号)。a.

b.

c.(3)一定温度和压强下、反应i

反应ⅱ

(远大于)(是以平衡物质的量分数代替平衡浓度计算的平衡常数)①仅发生反应i时。的平衡转化宰为,计算。②同时发生反应i和ⅱ时。与仅发生反应i相比,的平衡产率(填“增大”“减小”或“不变”)。【乙烷和乙烯混合气的分离】(4)通过修饰的Y分子筛的吸附-脱附。可实现和混合气的分离。的与分子的键电子形成配位键,这种配位键强弱介于范德华力和共价键之间。用该分子筛分离和的优点是。(5)常温常压下,将和等体积混合,以一定流速通过某吸附剂。测得两种气体出口浓度(c)与进口浓度()之比随时间变化关系如图所示。下列推断合理的是(填标号)。A.前,两种气体均未被吸附B.p点对应的时刻,出口气体的主要成分是C.a-b对应的时间段内,吸附的逐新被替代〖答案〗(1)-566(2)>b(3)增大(4)4s空轨道识别度高,能有效将C2H4和C2H6分离,分离出的产物中杂质少,纯度较高(5)BC〖解析〗(1)将两个反应依次标号为反应①和反应②,反应①-反应②×2可得目标反应,则ΔH3=ΔH1-2ΔH2=(-209.8-178.1×2)kJ/mol=-566kJ/mol。(2)从图中可知,压强相同的情况下,随着温度升高,C2H6的平衡转化率增大,因此该反应为吸热反应,ΔH4>0。a.600℃,0.6MPa时,C2H6的平衡转化率约为20%,a错误;b.700℃,0.7MPa时,C2H6的平衡转化率约为50%,最接近40%,b正确;c.700℃,0.8MPa时,C2H6的平衡转化率接近50%,升高温度,该反应的化学平衡正向移动,C2H6转化率增大,因此800℃,0.8MPa时,C2H6的平衡转化率大于50%,c错误;故〖答案〗选b。(3)①仅发生反应i,设初始时C2H6物质的量为1mol,平衡时C2H6转化率为25%,则消耗C2H60.25mol,生成C2H40.25mol,生成H20.25mol,Ka1==。②只发生反应i时,随着反应进行,气体总物质的量增大,压强增大促使化学平衡逆向移动,同时发生反应i和反应ii,且从题干可知Ka2远大于Ka1,反应ii为等体积反应,因为反应ii的发生相当于在单独发生反应i的基础上减小了压强,则反应i化学平衡正向移动,C2H4平衡产率增大。(4)配合物中,金属离子通常提供空轨道,配体提供孤电子对,则Cu+的4s空轨道与C2H4分子的π键电子形成配位键。C2H4能与Cu+形成配合物而吸附在Y分子筛上,C2H6中无孤电子对不能与Cu+形成配合物而无法吸附,通过这种分子筛分离C2H4和C2H6,优点是识别度高,能有效将C2H4和C2H6分离,分离出的产物中杂质少,纯度较高。(5)A.前30min,等于0,出口浓度c为0,说明两种气体均被吸附,A错误;B.p点时,C2H6对应的约为1.75,出口处C2H6浓度较大,而C2H4对应的较小,出口处C2H4浓度较小,说明此时出口处气体的主要成分为C2H6,B正确;C.a点处C2H6的=1,说明此时C2H6不再吸附在吸附剂上,而a点后C2H6的>1,说明原来吸附在吸附剂上的C2H6也开始脱落,同时从图中可知,a点后一段时间,C2H4的仍为0,说明是吸附的C2H6逐渐被C2H4替代,p点到b点之间,吸附的C2H6仍在被C2H4替代,但是速率相对之前有所减小,同时吸附剂可能因吸附量有限等原因无法一直吸附C2H4,因此p点后C2H4的也逐步增大,直至等于1,此时吸附剂不能再吸附两种物质,C正确;故〖答案〗选BC。8.(2023·全国乙卷)硫酸亚铁在工农业生产中有许多用途,如可用作农药防治小麦黑穗病,制造磁性氧化铁、铁催化剂等。回答下列问题:(1)在气氛中,的脱水热分解过程如图所示:根据上述实验结果,可知_______,_______。(2)已知下列热化学方程式:则的_______。(3)将置入抽空的刚性容器中,升高温度发生分解反应:(Ⅰ)。平衡时的关系如下图所示。时,该反应的平衡总压_______、平衡常数_______。随反应温度升高而_______(填“增大”“减小”或“不变”)。(4)提高温度,上述容器中进一步发生反应(Ⅱ),平衡时_______(用表示)。在时,,则_______,_______(列出计算式)。〖答案〗(1)41(2)(a+c-2b)(3)3增大(4)46.26〖解析〗(1)由图中信息可知,当失重比为19.4%时,转化为,则,解之得=4;当失重比为38.8%时,转化为,则,解之得y=1。(2)①②③根据盖斯定律可知,①+③-②2可得,则(a+c-2b)。(3)将置入抽空的刚性容器中,升高温度发生分解反应:(Ⅰ)。由平衡时的关系图可知,时,,则,因此,该反应的平衡总压3、平衡常数。由图中信息可知,随着温度升高而增大,因此,随反应温度升高而增大。(4)提高温度,上述容器中进一步发生反应(Ⅱ),在同温同压下,不同气体的物质的量之比等于其分压之比,由于仅发生反应(Ⅰ)时,则,因此,平衡时。在时,,则、,联立方程组消去,可得,代入相关数据可求出46.26,则,。9.(2023·新课标卷)氨是最重要的化学品之一,我国目前氨的生产能力位居世界首位。回答下列问题:(1)根据图1数据计算反应的_______。(2)研究表明,合成氨反应在催化剂上可能通过图2机理进行(*表示催化剂表面吸附位,表示被吸附于催化剂表面的)。判断上述反应机理中,速率控制步骤(即速率最慢步骤)为_______(填步骤前的标号),理由是_______。(3)合成氨催化剂前驱体(主要成分为)使用前经还原,生成包裹的。已知属于立方晶系,晶胞参数,密度为,则晶胞中含有的原子数为_______(列出计算式,阿伏加德罗常数的值为)。(4)在不同压强下,以两种不同组成进料,反应达平衡时氨的摩尔分数与温度的计算结果如下图所示。其中一种进料组成为,另一种为。(物质i的摩尔分数:)①图中压强由小到大的顺序为_______,判断的依据是_______。②进料组成中含有惰性气体的图是_______。③图3中,当、时,氮气的转化率_______。该温度时,反应的平衡常数_______(化为最简式)。〖答案〗(1)(2)(ⅱ)在化学反应中,最大的能垒为速率控制步骤,而断开化学键的步骤都属于能垒,由于的键能比H-H键的大很多,因此,在上述反应机理中,速率控制步骤为(ⅱ)(3)(4)合成氨的反应为气体分子数减少的反应,压强越大平衡时氨的摩尔分数越大图4〖解析〗(1)在化学反应中,断开化学键要消耗能量,形成化学键要释放能量,反应的焓变等于反应物的键能总和与生成物的键能总和的差,因此,由图1数据可知,反应的。(2)由图1中信息可知,的,则的键能为;的,则H-H键的键能为。在化学反应中,最大的能垒为速率控制步骤,而断开化学键的步骤都属于能垒,由于的键能比H-H键的大很多,因此,在上述反应机理中,速率控制步骤为(ⅱ)。(3)已知属于立方晶系,晶胞参数,密度为,设其晶胞中含有的原子数为,则晶体密度,解之得,即晶胞中含有的原子数为。(4)①合成氨的反应中,压强越大越有利于氨的合成,因此,压强越大平衡时氨的摩尔分数越大。由图中信息可知,在相同温度下,反应达平衡时氨的摩尔分数,因此,图中压强由小到大的顺序为,判断的依据是:合成氨的反应为气体分子数减少的反应,压强越大平衡时氨的摩尔分数越大。②对比图3和图4中的信息可知,在相同温度和相同压强下,图4中平衡时氨的摩尔分数较小。在恒压下充入情性气体,反应混合物中各组分的浓度减小,各组分的分压也减小,化学平衡要朝气体分子数增大的方向移动,因此,充入情性气体不利于合成氨,进料组成中含有情性气体的图是图4。③图3中,进料组成为两者物质的量之比为3:1。假设进料中氢气和氮气的物质的量分别为3mol和1mol,达到平衡时氮气的变化量为xmol,则有:当、时,,解之得,则氮气的转化率,平衡时、、的物质的量分别为、2、,其物质的量分数分别为、、,则该温度下因此,该温度时,反应的平衡常数。10.(2023·山东卷)一定条件下,水气变换反应的中间产物是。为探究该反应过程,研究水溶液在密封石英管中的分子反应:Ⅰ.Ⅱ.研究发现,在反应Ⅰ、Ⅱ中,仅对反应Ⅰ有催加速作用;反应Ⅰ速率远大于反应Ⅱ,近似认为反应Ⅰ建立平衡后始终处于平衡状态。忽略水电离,其浓度视为常数。回答下列问题:(1)一定条件下,反应Ⅰ、Ⅱ的焓变分别为、,则该条件下水气变换反应的焓变_____(用含的代数式表示)。(2)反应Ⅰ正反应速率方程为:,k为反应速率常数。温度下,电离平衡常数为,当平衡浓度为时,浓度为_____,此时反应Ⅰ应速率_____(用含和k的代数式表示)。(3)温度下,在密封石英管内完全充满水溶液,使分解,分解产物均完全溶于水。含碳物种浓度与反应时间的变化关系如图所示(忽略碳元素的其他存在形式)。时刻测得的浓度分别为,反应Ⅱ达平衡时,测得的浓度为。体系达平衡后_____(用含y的代数式表示,下同),反应Ⅱ的平衡常数为_____。相同条件下,若反应起始时溶液中同时还含有盐酸,则图示点中,的浓度峰值点可能是_____(填标号)。与不同盐酸相比,达浓度峰值时,浓度_____(填“增大”“减小”或“不变”),的反应_____(填“增大”“减小”或“不变”)。〖答案〗(1)-(2)(3)a减小不变〖解析〗(1)根据盖斯定律,反应II-反应I=水气变换反应,故水气变换反应的焓变=-;(2)T1温度时,HCOOH建立电离平衡:,c(HCOO-)=c(H+),故c(H+)=。。(3)t1时刻时,c(CO)达到最大值,说明此时反应I达平衡状态。此时故t1时刻c(HCOOH)=1.0-0.70-0.16=0.14mol·L-1,K(I)=。t1时刻→反应II达平衡过程,则c(H2)=b+0.16=y,b=(y-0.16)mol·L-1,c(HCOOH)=0.14-a-b=0.3-a-y,c(CO)=a+0.7,K(I)=,a=。故=,K(II)=。加入0.1mol·L-1盐酸后,H+对反应I起催化作用,加快反应I的反应速率,缩短到达平衡所需时间,故CO浓度峰值提前,由于时间缩短,反应Ⅱ消耗的HCOOH减小,体系中HCOOH浓度增大,导致CO浓度大于t1时刻的峰值,故c(CO)最有可能在a处达到峰值。此时c(CO2)会小于不含盐酸的浓度,=K(I),温度不变,平衡常数不变,则的值不变。11.(2023·福建卷)探究甲醇对丙烷制丙烯的影响。丙烷制烯烃过程主要发生的反应有ⅰ.ⅱ.ⅲ.已知:为用气体分压表示的平衡常数,分压=物质的量分数×总压。在下,丙烷单独进料时,平衡体系中各组分的体积分数见下表。物质丙烯乙烯甲烷丙烷氢气体积分数(%)2123.755.20.10(1)比较反应自发进行(∆G=∆H-T∆S<0)的最低温度,反应ⅰ反应ⅱ(填“>”或“<”)。(2)①在该温度下,Kp2远大于Kp1,但φ(C3H6)和φ(C2H4)相差不大,说明反应ⅲ的正向进行有利于反应ⅰ的反应和反应ⅱ的反应(填“正向”或“逆向”)。②从初始投料到达到平衡,反应ⅰ、ⅱ、ⅲ的丙烷消耗的平均速率从大到小的顺序为:。③平衡体系中检测不到,可认为存在反应:,下列相关说法正确的是(填标号)。a.b.c.使用催化剂,可提高丙烯的平衡产率d.平衡后再通入少量丙烷,可提高丙烯的体积分数④由表中数据推算:丙烯选择性(列出计算式)。(3)丙烷甲醇共进料时,还发生反应:ⅳ.在下,平衡体系中各组分体积分数与进料比的关系如图所示。①进料比n(丙烷)(甲醇)时,体系总反应:②随着甲醇投料增加,平衡体系中丙烯的体积分数降低的原因是。〖答案〗(1)>(2)正向逆向ⅱ>ⅰ>ⅲab(3)-29甲醇投料增加,氢气增多,导致反应1逆移,则丙烯体积分数降低〖祥解〗Kp为用气体分压表示的平衡常数,分压=物质的量分数×总压,巧用盖斯定律解决问题。结合阿伏加德罗定律将物质的量和体积进行转化。〖解析〗(1)反应ⅰ的∆G=124-127T(未带单位)<0,T>,同理反应ⅱ:T>,故反应ⅰ的最低温度比反应ⅱ的最低温度大,故〖答案〗为:>;(2)①ⅲ的正向进行氢气浓度减小,有利于i正向;ⅲ的正向进行甲烷浓度增大,有利于ⅱ逆向,②根据平衡体积分数,消耗1mol丙烷生成1mol丙烯或1mol乙烯或3mol甲烷,可知反应速率ⅱ>ⅰ>ⅲ,③根据盖斯定律:目标反应=2ⅰ+ⅲ,故;分压=物质的量分数×总压=体积分数×总压,故;催化剂不能影响平衡;通入丙烷平衡正向移动,根据温度不变Kp为定值,各组分的体积分数不变;④在相同条件下,物质的量之比等于体积之比;同时消耗1mol丙烷生成1mol丙烯或1mol乙烯或3mol甲烷,生成乙烯时同时生成等量的甲烷,因此丙烯的选择性;(3)ⅲ.ⅳ.目标反应=ⅲ+ⅳ,故△H=-29kJ/mol;甲醇投料增加,氢气增多,导致反应1逆移,则丙烯体积分数降低。故〖答案〗为:-29kJ/mol;甲醇投料增加,氢气增多,导致反应1逆移,则丙烯体积分数降低。12.(2023·广东卷)配合物广泛存在于自然界,且在生产和生活中都发挥着重要作用。(1)某有机物能与形成橙红色的配离子,该配离子可被氧化成淡蓝色的配离子。①基态的电子轨道表示式为。②完成反应的离子方程式:(2)某研究小组对(1)中②的反应进行了研究。用浓度分别为的溶液进行了三组实验,得到随时间t的变化曲线如图。

①时,在内,的平均消耗速率=。②下列有关说法中,正确的有。A.平衡后加水稀释,增大B.平衡转化率:C.三组实验中,反应速率都随反应进程一直减小D.体系由橙红色转变为淡蓝色所需时间:(3)R的衍生物L可用于分离稀土。溶液中某稀土离子(用M表示)与L存在平衡:

研究组配制了L起始浓度与L起始浓度比不同的系列溶液,反应平衡后测定其核磁共振氢谱。配体L上的某个特征H在三个物种中的化学位移不同,该特征H对应吸收峰的相对峰面积S(体系中所有特征H的总峰面积计为1)如下表。01.0000ax0.64b0.400.60〖备注〗核磁共振氢谱中相对峰面积S之比等于吸收峰对应H的原子数目之比;“”表示未检测到。①时,。②时,平衡浓度比。(4)研究组用吸收光谱法研究了(3)中M与L反应体系。当时,测得平衡时各物种随的变化曲线如图。时,计算M的平衡转化率(写出计算过程,结果保留两位有效数字)。

〖答案〗(1)HNO2(2)AB(3)0.363:4或0.75(4)98%〖解析〗(1)①基态的电子轨道表示式为

;②根据原子守恒可知离子方程式中需要增加HNO2。(2)①浓度分别为的溶液,反应物浓度增加,反应速率增大,据此可知三者对应的曲线分别为Ⅰ、Ⅱ、Ⅲ;时,在内,观察图像可知的平均消耗速率为;②A.对于反应HNO2,加水稀释,平衡往粒子数增加的方向移动,含量增加,含量减小,增大,A正确;B.浓度增加,转化率增加,故,B正确;C.观察图像可知,三组实验反应速率都是前期速率增加,后期速率减小,C错误;D.硝酸浓度越高,反应速率越快,体系由橙红色转变为淡蓝色所需时间越短,故,D错误;故选AB。(3)①时,,且=0.64,得x=0.36;②相比于含有两个配体,则与的浓度比应为相对峰面积S的一半与的相对峰面积S之比,即。(4);,由L守恒可知,则;则M的转化率为。13.(2023·浙江卷)水煤气变换反应是工业上的重要反应,可用于制氢。水煤气变换反应:

该反应分两步完成:

请回答:(1)_______。(2)恒定总压和水碳比[]投料,在不同条件下达到平衡时和的分压(某成分分压=总压×该成分的物质的量分数)如下表:条件10.400.400条件20.420.360.02①在条件1下,水煤气变换反应的平衡常数___________。②对比条件1,条件2中产率下降是因为发生了一个不涉及的副反应,写出该反应方程式____。(3)下列说法正确的是______。A.通入反应器的原料气中应避免混入B.恒定水碳比,增加体系总压可提高的平衡产率C.通入过量的水蒸气可防止被进一步还原为D.通过充入惰性气体增加体系总压,可提高反应速率(4)水煤气变换反应是放热的可逆反应,需在多个催化剂反应层间进行降温操作以“去除”反应过程中的余热(如图1所示),保证反应在最适宜温度附近进行。

①在催化剂活性温度范围内,图2中b-c段对应降温操作的过程,实现该过程的一种操作方法是______。A.按原水碳比通入冷的原料气

B.喷入冷水(蒸气)

C.通过热交换器换热②若采用喷入冷水(蒸气)的方式降温,在图3中作出平衡转化率随温度变化的曲线____。(5)在催化剂活性温度范围内,水煤气变换反应的历程包含反应物分子在催化剂表面的吸附(快速)、反应及产物分子脱附等过程。随着温度升高,该反应的反应速率先增大后减小,其速率减小的原因是________。〖答案〗(1)6(2)2CO+3H2⇌CH4+H2O(3)AC(4)AC

(5)温度过高时,不利于反应物分子在催化剂表面的吸附,从而导致其反应物分子在催化剂表面的吸附量及浓度降低,反应速率减小;温度过高还会导致催化剂的活性降低,从而使化学反应速率减小〖解析〗(1)设方程式①

根据盖斯定律可知,③=①-②,则;(2)①条件1下没有甲烷生成,只发生了水煤气变换反应,该反应是一个气体分子数不变的反应。设在条件1下平衡时容器的总体积为V,水蒸气和一氧化碳的投料分别为12mol和5mol,参加反应的一氧化碳为xmol,根据已知信息可得以下三段式:,解得x=4;则平衡常数;②根据表格中的数据可知,有甲烷生成,且该副反应没有二氧化碳参与,且氢气的产率降低,则该方程式为:CO+3H2⇌CH4+H2O;(3)A.一氧化碳和氢气都可以和氧气反应,则通入反应器的原料气中应避免混入,A正确;B.该反应前后气体计量系数相同,则增加体系总压平衡不移动,不能提高平衡产率,B错误;C.通入过量的水蒸气可以促进四氧化三铁被氧化为氧化铁,水蒸气不能将铁的氧化物还原为单质铁,但过量的水蒸气可以降低体系中CO和H2的浓度,从而防止铁的氧化物被还原为单质铁,C正确;D.若保持容器的体积不变,通过充入惰性气体增加体系总压,反应物浓度不变,反应速率不变,D错误;故选AC;(4)①A.按原水碳比通入冷的原料气,可以降低温度,同时化学反应速率稍减小,导致CO的转化率稍减小,与图中变化相符,A正确;B.喷入冷水(蒸气),可以降低温度,但是同时水蒸气的浓度增大,会导致CO的转化率增大,与图中变化不符,B错误;C.通过热交换器换热,可以降低温度,且不改变投料比,同时化学反应速率稍减小,导致CO的转化率稍减小,与图中变化相符,C正确;故选AC;②增大水蒸气的浓度,平衡正向移动,则一氧化碳的的平衡转化率增大,会高于原平衡线,故图像为:

;(5)反应物分子在催化剂表面的吸附是一个放热的快速过程,温度过高时,不利于反应物分子在催化剂表面的吸附,从而导致其反应物分子在催化剂表面的吸附量及浓度降低,反应速率减小;温度过高还会导致催化剂的活性降低,从而使化学反应速率减小。14.(2023·湖北卷)纳米碗是一种奇特的碗状共轭体系。高温条件下,可以由分子经过连续5步氢抽提和闭环脱氢反应生成。的反应机理和能量变化如下:

回答下列问题:(1)已知中的碳氢键和碳碳键的键能分别为和,H-H键能为。估算的_______。(2)图示历程包含_______个基元反应,其中速率最慢的是第_______个。(3)纳米碗中五元环和六元环结构的数目分别为_______、_______。(4)1200K时,假定体系内只有反应发生,反应过程中压强恒定为(即的初始压强),平衡转化率为α,该反应的平衡常数为_______(用平衡分压代替平衡浓度计算,分压=总压×物质的量分数)。(5)及反应的(为平衡常数)随温度倒数的关系如图所示。已知本实验条件下,(R为理想气体常数,c为截距)。图中两条线几乎平行,从结构的角度分析其原因是_______。

(6)下列措施既能提高反应物的平衡转化率,又能增大生成的反应速率的是_______(填标号)。a.升高温度

b.增大压强

c.加入催化剂〖答案〗(1)128(2)33(3)610(4)(5)在反应过程中,断裂和形成的化学键相同(6)a〖解析〗(1)由和的结构式和反应历程可以看出,中断裂了2根碳氢键,形成了1根碳碳键,所以的=,故〖答案〗为:128;(2)由反应历程可知,包含3个基元反应,分别为:,,,其中第三个的活化能最大,反应速率最慢,故〖答案〗为:3;3;(3)由的结构分析,可知其中含有1个五元环,10个六元环,每脱两个氢形成一个五元环,则总共含有6个五元环,10个六元环,故〖答案〗为:6;10;(4)1200K时,假定体系内只有反应发生,反应过程中压强恒定为(即的初始压强),平衡转化率为α,设起始量为1mol,则根据信息列出三段式为:则,,,该反应的平衡常数=,故〖答案〗为:;(5)及反应的(为平衡常数)随温度倒数的关系如图。图中两条线几乎平行,说明斜率几乎相等,根据(R为理想气体常数,c为截距)可知,斜率相等,则说明焓变相等,因为在反应过程中,断裂和形成的化学键相同,故〖答案〗为:在反应过程中,断裂和形成的化学键相同;(6)a.由反应历程可知,该反应为吸热反应,升温,反应正向进行,提高了平衡转化率反应速率也加快,a符合题意;b.由化学方程式可知,该反应为正向体积增大的反应,加压,反应逆向进行,降低了平衡转化率,b不符合题意;c.加入催化剂,平衡不移动,不能提高平衡转化率,c不符合题意;故〖答案〗为:a。15.(2023·湖南卷)聚苯乙烯是一类重要的高分子材料,可通过苯乙烯聚合制得。Ⅰ.苯乙烯的制备(1)已知下列反应的热化学方程式:①②③计算反应④的_______;(2)在某温度、下,向反应器中充入气态乙苯发生反应④,其平衡转化率为50%,欲将平衡转化率提高至75%,需要向反应器中充入_______水蒸气作为稀释气(计算时忽略副反应);(3)在、下,以水蒸气作稀释气。作催化剂,乙苯除脱氢生成苯乙烯外,还会发生如下两个副反应:⑤⑥以上反应体系中,芳香烃产物苯乙烯、苯和甲苯的选择性S()随乙苯转化率的变化曲线如图所示,其中曲线b代表的产物是_______,理由是_______;

(4)关于本反应体系中催化剂的描述错误的是_______;A.X射线衍射技术可测定晶体结构B.可改变乙苯平衡转化率C.降低了乙苯脱氢反应的活化能D.改变颗粒大小不影响反应速率Ⅱ.苯乙烯的聚合苯乙烯聚合有多种方法,其中一种方法的关键步骤是某(Ⅰ)的配合物促进(引发剂,X表示卤素)生成自由基,实现苯乙烯可控聚合。(5)引发剂中活性最高的是_______;(6)室温下,①在配体L的水溶液中形成,其反应平衡常数为K;②在水中的溶度积常数为。由此可知,在配体L的水溶液中溶解反应的平衡常数为_______(所有方程式中计量系数关系均为最简整数比)。〖答案〗(1)+118(2)5(3)苯反应④为主反应,反应⑤⑥为副反应,苯乙烯的选择性最大;在恒温恒压下,随乙苯转化率的增大,反应⑤正向移动,反应⑥不移动,则曲线b代表产物苯(4)BD(5)C6H5CH2Cl(6)K∙Ksp〖解析〗(1)根据盖斯定律,将①-②-③可得C6H5C2H5(g)⇌C6H5CH=CH2(g)+H2(g)∆H4=-4386.9kJ/mol-(-4263.1kJ/mol)-(-241.8kJ/mol)=+118kJ/mol;〖答案〗为:+118;(2)设充入H2O(g)物质的量为xmol;在某温度、100kPa下,向反应器中充入1mol气态乙苯发生反应④。乙苯的平衡转化率为50%,可列三段式,此时平衡时混合气体总物质的量为1.5mol,此时容器的体积为V;当乙苯的平衡转化率为75%,可列三段式,此时乙苯、苯乙烯、H2物质的量之和为1.75mol,混合气的总物质的量为(1.75+x)mol,在恒温、恒压时,体积之比等于物质的量之比,此时容器的体积为;两次平衡温度相同,则平衡常数相等,则=,解得x=5;〖答案〗为:5;(3)曲线a芳香烃产物的选择性大于曲线b、c芳香烃产物的选择性,反应④为主反应,反应⑤⑥为副反应,则曲线a代表产物苯乙烯的选择性;反应④⑤的正反应为气体分子数增大的反应,反应⑥的正反应是气体分子数不变的反应;在913K、100kPa(即恒温恒压)下以水蒸气作稀释气,乙苯的转化率增大,即减小压强,反应④⑤都向正反应方向移动,反应⑥平衡不移动,故曲线b代表的产物是苯;〖答案〗为:苯;反应④为主反应,反应⑤⑥为副反应,苯乙烯的选择性最大;在恒温恒压下,随乙苯转化率的增大,反应⑤正向移动,反应⑥不移动,则曲线b代表产物苯;(4)A.测定晶体结构最常用的仪器是X射线衍射仪,即用X射线衍射技术可测定Fe2O3晶体结构,A项正确;B.催化剂不能使平衡发生移动,不能改变乙苯的平衡转化率,B项错误;C.催化剂能降低反应的活化能,加快反应速率,故Fe2O3可降低乙苯脱氢反应的活化能,C项正确;D.催化剂颗粒大小会影响接触面积,会影响反应速率,D项错误;〖答案〗选BD。(5)电负性Cl>Br>I,则极性C—Cl键>C—Br键>C—I键,则C6H5CH2Cl更易生成自由基,即活性最高的是C6H5CH2Cl;〖答案〗为:C6H5CH2Cl;(6)Cu+在配体L的水溶液中形成[Cu(L)2]+,则Cu++2L⇌[Cu(L)2]+的平衡常数K=;CuBr在水中的溶度积常数Ksp=c(Cu+)∙c(Br-);CuBr在配体L的水溶液中溶解反应为CuBr+2L⇌[Cu(L)2]++Br-,该反应的平衡常数为==K∙Ksp;〖答案〗为:K∙Ksp。16.(2023·辽宁卷)硫酸工业在国民经济中占有重要地位。(1)我国古籍记载了硫酸的制备方法——“炼石胆(CuSO4·5H2O)取精华法”。借助现代仪器分析,该制备过程中CuSO4·5H2O分解的TG曲线(热重)及DSC曲线(反映体系热量变化情况,数值已省略)如下图所示。700℃左右有两个吸热峰,则此时分解生成的氧化物有SO2、_______和_______(填化学式)。

(2)铅室法使用了大容积铅室制备硫酸(76%以下),副产物为亚硝基硫酸,主要反应如下:NO2+SO2+H2O=NO+H2SO42NO+O2=2NO2(ⅰ)上述过程中NO2的作用为_______。(ⅱ)为了适应化工生产的需求,铅室法最终被接触法所代替,其主要原因是_______(答出两点即可)。(3)接触法制硫酸的关键反应为SO2的催化氧化:SO2(g)+O2(g)SO3(g)ΔH=-98.9kJ·mol-1(ⅰ)为寻求固定投料比下不同反应阶段的最佳生产温度,绘制相应转化率(α)下反应速率(数值已略去)与温度的关系如下图所示,下列说法正确的是_______。

a.温度越高,反应速率越大b.α=0.88的曲线代表平衡转化率c.α越大,反应速率最大值对应温度越低d.可根据不同下的最大速率,选择最佳生产温度(ⅱ)为提高钒催化剂的综合性能,我国科学家对其进行了改良。不同催化剂下,温度和转化率关系如下图所示,催化性能最佳的是_______(填标号)。

(ⅲ)设O2的平衡分压为p,SO2的平衡转化率为αe,用含p和αe的代数式表示上述催化氧化反应的Kp=_______(用平衡分压代替平衡浓度计算)。〖答案〗(1)CuOSO3(2)催化剂反应中有污染空气的NO和NO2放出影响空气环境、NO2可以溶解在硫酸中给产物硫酸带来杂质、产率不高(〖答案〗合理即可)(3)cdd〖解析〗(1)根据图示的热重曲线所示,在700℃左右会出现两个吸热峰,说明此时CuSO4发生热分解反应,从TG图像可以看出,质量减少量为原CuSO4质量的一半,说明有固体CuO剩余,还有其他气体产出,此时气体产物为SO2、SO3、O2,可能出现的化学方程式为3CuSO43CuO+2SO2↑+SO3↑+O2↑,结合反应中产物的固体产物质量和气体产物质量可以确定,该反应的产物为CuO、SO2、SO3、O2,故〖答案〗为CuO、SO3。(2)(i)根据所给的反应方程式,NO2在反应过程中线消耗再生成,说明NO2在反应中起催化剂的作用;(ii)近年来,铅室法被接触法代替因为在反应中有污染空气的NO和NO2放出影响空气环境、同时作为催化剂的NO2可以溶解在硫酸中给产物硫酸带来杂质影响产品质量、产率不高(〖答案〗合理即可)。(3)(i)a.根据不同转化率下的反应速率曲线可以看出,随着温度的升高反应速率先加快后减慢,a错误;b.从图中所给出的速率曲线可以看出,相同温度下,转化率越低反应速率越快,但在转化率小于88%的时的反应速率图像并没有给出,无法判断α=0.88的条件下是平衡转化率,b错误;c.从图像可以看出随着转化率的增大,最大反应速率不断减小,最大反应速率出现的温度也逐渐降低,c正确;d.从图像可以看出随着转化率的增大,最大反应速率出现的温度也逐渐降低,这时可以根据不同转化率选择合适的反应温度以减少能源的消耗,d正确;故〖答案〗选cd;(ii)为了提高催化剂的综合性能,科学家对催化剂进行了改良,从图中可以看出标号为d的催化剂V-K-Cs-Ce对SO2的转化率最好,产率最佳,故〖答案〗选d;(iii)利用分压代替浓度计算平衡常数,反应的平衡常数Kp===;设SO2初始量为mmol,则平衡时n(SO2)=m-m·αe=m(1-αe),n(SO3)=m·αe,Kp==,故〖答案〗为。17.(2022·全国甲卷)金属钛(Ti)在航空航天、医疗器械等工业领域有着重要用途,目前生产钛的方法之一是将金红石转化为,再进一步还原得到钛。回答下列问题:(1)转化为有直接氯化法和碳氯化法。在时反应的热化学方程式及其平衡常数如下:(ⅰ)直接氯化:(ⅱ)碳氯化:①反应的为_______,_______Pa。②碳氯化的反应趋势远大于直接氯化,其原因是_______。③对于碳氯化反应:增大压强,平衡_______移动(填“向左”“向右”或“不”);温度升高,平衡转化率_______(填“变大”“变小”或“不变”)。(2)在,将、C、以物质的量比1∶2.2∶2进行反应。体系中气体平衡组成比例(物质的量分数)随温度变化的理论计算结果如图所示。①反应的平衡常数_______。②图中显示,在平衡时几乎完全转化为,但实际生产中反应温度却远高于此温度,其原因是_______。(3)碳氯化是一个“气—固—固”反应,有利于“固—固”接触的措施是_______。〖答案〗(1)

-223

1.2×1014

碳氯化反应气体分子数增加,∆H小于0,是熵增、放热过程,熵判据与焓判据均是自发过程,而直接氯化的体系气体分子数不变、且是吸热过程

向左

变小(2)

7.2×105

为了提高反应速率,在相同时间内得到更多的TiCl4产品,提高效益(3)将两固体粉碎后混合,同时鼓入Cl2,使固体粉末“沸腾”〖解析〗(1)①根据盖斯定律,将“反应ⅱ-反应ⅰ”得到反应2C(s)+O2(g)=2CO(g),则∆H=-51kJ/mol-172kJ/mol=-223kJ/mol;则Kp===1.2×1014Pa;②碳氯化的反应趋势远大于直接氯化,因为碳氯化反应气体分子数增加,∆H小于0,是熵增、放热过程,熵判据与焓判据均是自发过程,而直接氯化的体系气体分子数不变、且是吸热过程;③对应碳氯化反应,气体分子数增大,依据勒夏特列原理,增大压强,平衡往气体分子数减少的方向移动,即平衡向左移动;该反应是放热反应,温度升高,平衡往吸热方向移动,即向左移动,则平衡转化率变小。(2)①从图中可知,1400℃,体系中气体平衡组成比例CO2是0.05,TiCl4是0.35,CO是0.6,反应C(s)+CO2(g)=2CO(g)的平衡常数Kp(1400℃)==Pa=7.2×105Pa;②实际生产中需要综合考虑反应的速率、产率等,以达到最佳效益,实际反应温度远高于200℃,就是为了提高反应速率,在相同时间内得到更多的TiCl4产品。(3)固体颗粒越小,比表面积越大,反应接触面积越大。有利于TiO2–C“固-固”接触,可将两者粉碎后混合,同时鼓入Cl2,使固体粉末“沸腾”,增大接触面积。18.(2022·全国乙卷)油气开采、石油化工、煤化工等行业废气普遍含有的硫化氢,需要回收处理并加以利用。回答下列问题:(1)已知下列反应的热化学方程式:①

计算热分解反应④的________。(2)较普遍采用的处理方法是克劳斯工艺。即利用反应①和②生成单质硫。另一种方法是:利用反应④高温热分解。相比克劳斯工艺,高温热分解方法的优点是________,缺点是________。(3)在、反应条件下,将的混合气进行热分解反应。平衡时混合气中与的分压相等,平衡转化率为________,平衡常数________。(4)在、反应条件下,对于分别为、、、、的混合气,热分解反应过程中转化率随时间的变化如下图所示。①越小,平衡转化率________,理由是________。②对应图中曲线________,计算其在之间,分压的平均变化率为________。〖答案〗(1)170(2)

副产物氢气可作燃料

耗能高(3)50%

4.76(4)

越高

n(H2S):n(Ar)越小,H2S的分压越小,平衡向正反应方向进行,H2S平衡转化率越高

d

24.9〖解析〗(1)已知:①2H2S(g)+3O2(g)=2SO2(g)+2H2O(g)

ΔH1=-1036kJ/mol②4H2S(g)+2SO2(g)=3S2(g)+4H2O(g)

ΔH2=94kJ/mol③2H2(g)+O2(g)=2H2O(g)

ΔH3=-484kJ/mol根据盖斯定律(①+②)×-③即得到2H2S(g)=S2(g)+2H2(g)的ΔH4=(-1036+94)kJ/mol×+484kJ/mol=170kJ/mol;(2)根据盖斯定律(①+②)×可得2H2S(g)+O2(g)=S2(g)+2H2O(g)ΔH=(-1036+94)kJ/mol×=-314kJ/mol,因此,克劳斯工艺的总反应是放热反应;根据硫化氢分解的化学方程式可知,高温热分解方法在生成单质硫的同时还有氢气生成。因此,高温热分解方法的优点是:可以获得氢气作燃料;但由于高温分解H2S会消耗大量能量,所以其缺点是耗能高;(3)假设在该条件下,硫化氢和氩的起始投料的物质的量分别为1mol和4mol,根据三段式可知:平衡时H2S和H2的分压相等,则二者的物质的量相等,即1-x=x,解得x=0.5,所以H2S的平衡转化率为,所以平衡常数Kp==≈4.76kPa;(4)①由于正反应是体积增大的可逆反应,n(H2S):n(Ar)越小,H2S的分压越小,相当于降低压强,平衡向正反应方向移动,因此H2S平衡转化率越高;②n(H2S):n(Ar)越小,H2S平衡转化率越高,所以n(H2S):n(Ar)=1:9对应的曲线是d;根据图像可知n(H2S):n(Ar)=1:9反应进行到0.1s时H2S转化率为0.24。假设在该条件下,硫化氢和氩的起始投料的物质的量分别为1mol和9mol,则根据三段式可知此时H2S的压强为≈7.51kPa,H2S的起始压强为10kPa,所以H2S分压的平均变化率为=24.9kPa·s-1。19.(2022·广东卷)铬及其化合物在催化、金属防腐等方面具有重要应用。(1)催化剂可由加热分解制备,反应同时生成无污染气体。①完成化学方程式:______________。②催化丙烷脱氢过程中,部分反应历程如图,过程的焓变为_______(列式表示)。③可用于的催化氧化。设计从出发经过3步反应制备的路线_______(用“→”表示含氮物质间的转化);其中一个有颜色变化的反应的化学方程式为_______。(2)溶液中存在多个平衡。本题条件下仅需考虑如下平衡:(ⅰ)

(ⅱ)

①下列有关溶液的说法正确的有_______。A.加入少量硫酸,溶液的pH不变B.加入少量水稀释,溶液中离子总数增加C.加入少量溶液,反应(ⅰ)的平衡逆向移动D.加入少量固体,平衡时与的比值保持不变②25℃时,溶液中随pH的变化关系如图。当时,设、与的平衡浓度分别为x、y、,则x、y、z之间的关系式为_______;计算溶液中的平衡浓度_____(写出计算过程,结果保留两位有效数字)。③在稀溶液中,一种物质对光的吸收程度(A)与其所吸收光的波长()有关;在一定波长范围内,最大A对应的波长()取决于物质的结构特征;浓度越高,A越大。混合溶液在某一波长的A是各组分吸收程度之和。为研究对反应(ⅰ)和(ⅱ)平衡的影响,配制浓度相同、不同的稀溶液,测得其A随的变化曲线如图,波长、和中,与的最接近的是_______;溶液从a变到b的过程中,的值_______(填“增大”“减小”或“不变”)。〖答案〗(1)

N2↑

4H2O

(E1-E2)+ΔH+(E3-E4)

2NO+O2=2NO2(2)

BD

当溶液pH=9时,,因此可忽略溶液中即=0.20反应(ii)的平衡常数K2===3.3×10-7联立两个方程可得=6.0×10-4mol/L

λ3

增大〖解析〗(1)①分解过程中,生成Cr2O3和无污染气体,根据元素守恒可知,其余生成物为N2、H2O,根据原子守恒可知反应方程式为。②设反应过程中第一步的产物为M,第二步的产物为N,则X→M

ΔH1=(E1-E2),M→N

ΔH2=ΔH,N→Y

ΔH3=(E3-E4)1,根据盖斯定律可知,X(g)→Y(g)的焓变为ΔH1+ΔH2+ΔH3=(E1-E2)+ΔH+(E3-E4)。③NH3在Cr2O3作催化剂条件下,能与O2反应生成NO,NO与O2反应生成红棕色气体NO2,NO2与H2O反应生成HNO3和NO,若同时通入O2,可将氮元素全部氧化为HNO3,因此从NH3出发经过3步反应制备HNO3的路线为;其中NO反应生成NO2过程中,气体颜色发生变化,其反应方程式为2NO+O2=2NO2。(2)①K2Cr2O7溶液中存在平衡:(i)、(ii)。A.向溶液中加入少量硫酸,溶液中c(H+)增大,(ii)平衡逆向移动,根据勒夏特列原理可知,平衡移动只是减弱改变量,平衡后,溶液中c(H+)依然增大,因此溶液的pH将减小,故A错误;B.加水稀释过程中,根据“越稀越水解”、“越稀越电离”可知,(i)和(ii)的平衡都正向移动,两个平衡正向都是离子数增大的反应,因此稀释后,溶液中离子总数将增大,故B正确;C.加入少量NaOH溶液,(ii)正向移动,溶液中将减小,(i)将正向移动,故C错误;D.平衡(i)的平衡常数K1=,平衡常数只与温度和反应本身有关,因此加入少量K2Cr2O7溶液,不变,故D正确;综上所述,〖答案〗为:BD。②0.10mol/LK2Cr2O7溶液中,Cr原子的总浓度为0.20mol/L,当溶液pH=9.00时,溶液中Cr原子总浓度为=0.20mol/L,、与的平衡浓度分别为x、y、zmol/L,因此=0.10;由图8可知,当溶液pH=9时,,因此可忽略溶液中,即=0.20,反应(ii)的平衡常数K2===3.3×10-7,联立两个方程可得=6.0×10-4mol/L。③根据反应(i)、(ii)是离子浓度增大的平衡可知,溶液pH越大,溶液中越大,混合溶液在某一波长的A越大,溶液的pH越大,溶液中越大,因此与的λmax最接近的是λ3;反应(i)的平衡常数K1=,反应(ii)的平衡常数K2=,==,因此=,由上述分析逆推可知,b>a,即溶液pH从a变到b的过程中,溶液中c(H+)减小,所以的值将增大。20.(2022·湖南卷)2021年我国制氢量位居世界第一,煤的气化是一种重要的制氢途径。回答下列问题:(1)在一定温度下,向体积固定的密闭容器中加入足量的和,起始压强为时,发生下列反应生成水煤气:Ⅰ.Ⅱ.①下列说法正确的是_______;A.平衡时向容器中充入惰性气体,反应Ⅰ的平衡逆向移动B.混合气体的密度保持不变时,说明反应体系已达到平衡C.平衡时的体积分数可能大于D.将炭块粉碎,可加快反应速率②反应平衡时,的转化率为,CO的物质的量为。此时,整个体系_______(填“吸收”或“放出”)热量_______kJ,反应Ⅰ的平衡常数_______(以分压表示,分压=总压×物质的量分数)。(2)一种脱除和利用水煤气中方法的示意图如下:①某温度下,吸收塔中溶液吸收一定量的后,,则该溶液的_______(该温度下的);②再生塔中产生的离子方程式为_______;③利用电化学原理,将电催化还原为,阴极反应式为_______。〖答案〗(1)BD

吸收

31.2

(2)

10

2CO2↑++H2O

2CO2+12e-+12H+=C2H4+4H2O、AgCl+e-=Ag+Cl-〖解析〗(1)①A.在恒温恒容条件下,平衡时向容器中充入情性气体不能改变反应混合物的浓度,因此反应Ⅰ的平衡不移动,A说法不正确;B.在反应中有固体C转化为气体,气体的质量增加,而容器的体积不变,因此气体的密度在反应过程中不断增大,当混合气体的密度保持不变时,说明反应体系已达到平衡,B说法正确;C.若C(s)和H2O(g)完全反应全部转化为CO2(g)和H2(g),由C(s)+2H2O(g)=CO2(g)+2H2(g)可知,H2的体积分数的极值为,由于可逆反应只有一定的限度,反应物不可能全部转化为生成物,因此,平衡时H2的体积分数不可能大于,C说法不正确;D.将炭块粉碎可以增大其与H2O(g)的接触面积,因此可加快反应速率,D说法正确;综上所述,相关说法正确的是BD。②反应平衡时,H2O(g)的转化率为50%,则水的变化量为0.5mol,水的平衡量也是0.5mol,由于CO的物质的量为0.1mol,则根据O原子守恒可知CO2的物质的量为0.2mol,生成0.2molCO2时消耗了0.2molCO,故在反应Ⅰ实际生成了0.3molCO。根据相关反应的热化学方程式可知,生成0.3molCO要吸收热量39.42kJ,生成0.2molCO2要放出热量8.22kJ此时,因此整个体系吸收热量39.42kJ-8.22kJ=31.2kJ;由H原子守恒可知,平衡时H2的物质的量为0.5mol,CO的物质的量为0.1mol,CO2的物质的量为0.2mol,水的物质的量为0.5mol,则平衡时气体的总物质的量为0.5mol+0.1mol+0.2mol+0.5mol=1.3mol,在同温同体积条件下,气体的总压之比等于气体的总物质的量之比,则平衡体系的总压为0.2MPa1.3=0.26MPa,反应I(C(s)+H2O(g)CO(g)+H2(g))的平衡常数Kp=。(2)①某温度下,吸收塔中K2CO3溶液吸收一定量的CO2后,c():c()=1:2,由可知,=,则该溶液的pH=10;②再生塔中KHCO3受热分解生成K2CO3、H2O和CO2,该反应的离子方程式为2CO2↑++H2O;③利用电化学原理,将CO2电催化还原为C2H4,阴极上发生还原反应,阳极上水放电生成氧气和H+,H+通过质子交换膜迁移到阴极区参与反应生成乙烯,铂电极和Ag/AgCl电极均为阴极,在电解过程中AgCl可以转化为Ag,则阴极的电极反应式为2CO2+12e-+12H+=C2H4+4H2O、AgCl+e-=Ag+Cl-。21.(2022·山东卷)利用丁内酯(BL)制备1,丁二醇(BD),反应过程中伴有生成四氢呋喃(THF)和丁醇(BuOH)的副反应,涉及反应如下:已知:①反应Ⅰ为快速平衡,可认为不受慢反应Ⅱ、Ⅲ的影响;②因反应Ⅰ在高压氛围下进行,故压强近似等于总压。回答下列问题:(1)以或BD为初始原料,在、的高压氛围下,分别在恒压容器中进行反应。达平衡时,以BL为原料,体系向环境放热;以BD为原料,体系从环境吸热。忽略副反应热效应,反应Ⅰ焓变_______。(2)初始条件同上。表示某物种i的物质的量与除外其它各物种总物质的量之比,和随时间t变化关系如图甲所示。实验测得,则图中表示变化的曲线是_______;反应Ⅰ平衡常数_______(保留两位有效数字)。以BL为原料时,时刻_______,BD产率=_______(保留两位有效数字)。(3)为达平衡时与的比值。、、三种条件下,以为初始原料,在相同体积的刚性容器中发生反应,随时间t变化关系如图乙所示。因反应在高压氛围下进行,可忽略压强对反应速率的影响。曲线a、b、c中,最大的是_______(填代号);与曲线b相比,曲线c达到所需时间更长,原因是_______。〖答案〗(1)-200(X+Y)(2)

a或c

8.3×10-8

0.08

39%(3)

c

由于b和c代表的温度相同,而压强对反应速率的影响可忽略,压强增大反应Ⅱ、Ⅲ均是逆向移动,增大,故=1.0所需时间更长〖解析〗(1)依题意,结合已知信息,可推定在同温同压下,以同物质的量的BL或BD为初始原料,达到平衡时的状态相同,两个平衡完全等效。则以5.0×10-3mol的BL为原料,达到平衡时放出XkJ热量与同物质的量的BD为原料达到平衡时吸收YkJ热量的能量二者能量差值为(X

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论