数学(文科)总复习演练提升同步测评直线、平面垂直的判定与性质_第1页
数学(文科)总复习演练提升同步测评直线、平面垂直的判定与性质_第2页
数学(文科)总复习演练提升同步测评直线、平面垂直的判定与性质_第3页
数学(文科)总复习演练提升同步测评直线、平面垂直的判定与性质_第4页
数学(文科)总复习演练提升同步测评直线、平面垂直的判定与性质_第5页
已阅读5页,还剩9页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学必求其心得,业必贵于专精学必求其心得,业必贵于专精学必求其心得,业必贵于专精A组专项基础训练(时间:40分钟)1.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,m∥β,则下列四种位置关系中,不一定成立的是()A.AB∥mB.AC⊥mC.AB∥βD.AC⊥β【解析】如图所示,AB∥l∥m;AC⊥l,m∥l⇒AC⊥m;AB∥l⇒AB∥β,只有D不一定成立,故选D.【答案】D2.在空间内,设l,m,n是三条不同的直线,α,β,γ是三个不同的平面,则下列命题中为假命题的是()A.α⊥γ,β⊥γ,α∩β=l,则l⊥γB.l∥α,l∥β,α∩β=m,则l∥mC.α∩β=l,β∩γ=m,γ∩α=n,若l∥m,则l∥nD.α⊥γ,β⊥γ,则α⊥β或α∥β【解析】对于A,∵如果两个相交平面均垂直于第三个平面,那么它们的交线垂直于第三个平面,∴该命题是真命题;对于B,∵如果一条直线平行于两个相交平面,那么该直线平行于它们的交线,∴该命题是真命题;对于C,∵如果三个平面两两相交,有三条交线,那么这三条交线交于一点或相互平行,∴该命题是真命题;对于D,当两个平面同时垂直于第三个平面时,这两个平面可能不垂直也不平行,∴D是假命题.综上所述,选D.【答案】D3.(2017·天津滨海新区模拟)如图,以等腰直角三角形ABC的斜边BC上的高AD为折痕,把△ABD和△ACD折成互相垂直的两个平面后,某学生得出下列四个结论:①BD⊥AC;②△BAC是等边三角形;③三棱锥D。ABC是正三棱锥;④平面ADC⊥平面ABC。其中正确的是()A.①②④B.①②③C.②③④D.①③④【解析】由题意知,BD⊥平面ADC,故BD⊥AC,①正确;AD为等腰直角三角形斜边BC上的高,平面ABD⊥平面ACD,所以AB=AC=BC,△BAC是等边三角形,②正确;易知DA=DB=DC,又由②知③正确;由①知④错.故选B。【答案】B4.(2015·福建)若l,m是两条不同的直线,m垂直于平面α,则“l⊥m"是“l∥α”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件【解析】m垂直于平面α,当l⊂α时,也满足l⊥m,但直线l与平面α不平行,∴充分性不成立,反之,l∥α,一定有l⊥m,必要性成立.故选B.【答案】B5.(2017·青岛质检)设a,b是两条不同的直线,α,β是两个不同的平面,则能得出a⊥b的是()A.a⊥α,b∥β,α⊥βB.a⊥α,b⊥β,α∥βC.a⊂α,b⊥β,α∥βD.a⊂α,b∥β,α⊥β【解析】对于C项,由α∥β,a⊂α可得a∥β,又b⊥β,得a⊥b,故选C.【答案】C6.(2017·吉林实验中学)设a,b,c是空间的三条直线,α,β是空间的两个平面,则下列命题中,逆命题不成立的是()A.当c⊥α时,若c⊥β,则α∥βB.当b⊂α时,若b⊥β,则α⊥βC.当b⊂α,且c是a在α内的射影时,若b⊥c,则a⊥bD.当b⊂α,且c⊄α时,若c∥α,则b∥c【解析】A的逆命题为:当c⊥α时,若α∥β,则c⊥β。由线面垂直的性质知c⊥β,故A正确;B的逆命题为:当b⊂α时,若α⊥β,则b⊥β,显然错误,故B错误;C的逆命题为:当b⊂α,且c是a在α内的射影时,若a⊥b,则b⊥c.由三垂线逆定理知b⊥c,故C正确;D的逆命题为:当b⊂α,且c⊄α时,若b∥c,则c∥α.由线面平行判定定理可得c∥α,故D正确.【答案】B7.如图,PA⊥圆O所在的平面,AB是圆O的直径,C是圆O上的一点,E,F分别是点A在PB,PC上的射影,给出下列结论:①AF⊥PB;②EF⊥PB;③AF⊥BC;④AE⊥平面PBC。其中正确结论的序号是________.【解析】由题意知PA⊥平面ABC,∴PA⊥BC.又AC⊥BC,且PA∩AC=A,∴BC⊥平面PAC,∴BC⊥AF.∵AF⊥PC,且BC∩PC=C,∴AF⊥平面PBC,∴AF⊥PB,又AE⊥PB,AE∩AF=A,∴PB⊥平面AEF,∴PB⊥EF。故①②③正确.【答案】①②③8.(2017·福建四地六校月考)点P在正方体ABCD­A1B1C1D1的面对角线BC1上运动,则下列四个命题:①三棱锥A­D1PC的体积不变;②A1P∥平面ACD1;③DP⊥BC1;④平面PDB1⊥平面ACD1。其中正确的命题序号是________.【解析】由题意可得直线BC1平行于直线AD1,并且直线AD1⊂平面AD1C,直线BC1⊄平面AD1C,所以直线BC1∥平面AD1C.所以点P到平面AD1C的距离不变,VA.D1PC=VP。AD1C,所以体积不变.故①正确;连接A1C1,A1B,可得平面AD1C∥平面A1C1B.又因为A1P⊂平面A1C1B,所以A1P∥平面ACD1,故②正确;当点P运动到B点时,△DBC1是等边三角形,所以DP不垂直于BC1。故③不正确;因为直线AC⊥平面DB1,DB1⊂平面DB1.所以AC⊥DB1。同理可得AD1⊥DB1.所以可得DB1⊥平面AD1C.又因为DB1⊂平面PDB1。所以可得平面PDB1⊥平面ACD1。故④正确.综上,正确的序号为①②④。【答案】①②④9.(2017·郑州模拟)如图,已知三棱柱ABC。A′B′C′的侧棱垂直于底面,AB=AC,∠BAC=90°,点M,N分别为A′B和B′C′的中点.(1)证明:MN∥平面AA′C′C;(2)设AB=λAA′,当λ为何值时,CN⊥平面A′MN,试证明你的结论.【解析】(1)证明如图,取A′B′的中点E,连接ME,NE。因为M,N分别为A′B和B′C′的中点,所以NE∥A′C′,ME∥AA′.又A′C′⊂平面AA′C′C,A′A⊂平面AA′C′C,所以ME∥平面AA′C′C,NE∥平面AA′C′C,所以平面MNE∥平面AA′C′C,因为MN⊂平面MNE,所以MN∥平面AA′C′C。(2)连接BN,设AA′=a,则AB=λAA′=λa,由题意知BC=eq\r(2)λa,CN=BN=eq\r(a2+\f(1,2)λ2a2),因为三棱柱ABC.A′B′C′的侧棱垂直于底面,所以平面A′B′C′⊥平面BB′C′C,因为AB=AC,点N是B′C′的中点,所以A′N⊥平面BB′C′C,所以CN⊥A′N,要使CN⊥平面A′MN,只需CN⊥BN即可,所以CN2+BN2=BC2,即2eq\b\lc\(\rc\)(\a\vs4\al\co1(a2+\f(1,2)λ2a2))=2λ2a2,解得λ=eq\r(2),故当λ=eq\r(2)时,CN⊥平面A′MN.10.(2016·江苏)如图,在直三棱柱ABC。A1B1C1中,D,E分别为AB,BC的中点,点F在侧棱B1B上,且B1D⊥A1F,A1C1⊥A1B1。求证:(1)直线DE∥平面A1C1F;(2)平面B1DE⊥平面A1C1F.【证明】(1)在直三棱柱ABC。A1B1C1中,A1C1∥AC.在△ABC中,因为D,E分别为AB,BC的中点,所以DE∥AC,于是DE∥A1C1。又因为DE⊄平面A1C1F,A1C1⊂平面A1C1F,所以直线DE∥平面A1C1F。(2)在直三棱柱ABC。A1B1C1中,A1A⊥平面A1B1C1.因为A1C1⊂平面A1B1C1,所以A1A⊥A1C1.又因为A1C1⊥A1B1,A1A⊂平面ABB1A1,A1B1⊂平面ABB1A1,A1A∩A1B1=A1,所以A1C1⊥平面ABB1A1.因为B1D⊂平面ABB1A1,所以A1C1⊥B1D.又因为B1D⊥A1F,A1C1⊂平面A1C1F,A1F⊂平面A1C1F,A1C1∩A1F=A1,所以B1D⊥平面A1C1F.因为直线B1D⊂平面B1DE,所以平面B1DE⊥平面A1C1F。B组专项能力提升(时间:30分钟)11.(2017·贵州模拟)如图,已知P是矩形ABCD所在平面外一点,PA⊥平面ABCD,E,F分别是AB,PC的中点.若∠PDA=45°,则EF与平面ABCD所成角的大小是()A.90°B.60°C.45°D.30°【解析】取PD的中点G,连接AG,FG。∵E,F分别为AB,PC的中点,∴AE=eq\f(1,2)AB,GF∥DC且GF=eq\f(1,2)DC.又在矩形ABCD中AB∥CD且AB=CD,∴AE∥GF且AE=GF,∴四边形AEFG是平行四边形,∴AG∥EF,∴AG与平面ABCD所成的角等于EF与平面ABCD所成的角.过G作GH⊥AD,垂足为H,则GH∥PA.∵PA⊥平面ABCD,∴GH⊥平面ABCD,∴∠GAH为AG与平面ABCD所成的角,即为所求角.∵∠PDA=45°,G为PD的中点,∴∠GAH=45°,即EF与平面ABCD所成的角为45°,故选C.【答案】C12.设α,β是空间两个不同的平面,m,n是平面α及β外的两条不同直线.从“①m⊥n;②α⊥β;③n⊥β;④m⊥α”中选取三个作为条件,余下一个作为结论,写出你认为正确的一个命题:________(用代号表示).【解析】逐一判断.若①②③成立,则m与α的位置关系不确定,故①②③⇒④错误;同理①②④⇒③也错误;①③④⇒②与②③④⇒①均正确.【答案】①③④⇒②(或②③④⇒①)13.已知α,β,γ是三个不同的平面,命题“α∥β,且α⊥γ⇒β⊥γ”是真命题,如果把α,β,γ中的任意两个换成直线,另一个保持不变,在所得的所有新命题中,真命题有________个.【解析】若α,β换为直线a,b,则命题化为“a∥b,且a⊥γ⇒b⊥γ”,此命题为真命题;若α,γ换为直线a,b,则命题化为“a∥β,且a⊥b⇒b⊥β”,此命题为假命题;若β,γ换为直线a,b,则命题化为“a∥α,且b⊥α⇒a⊥b”,此命题为真命题.【答案】214.(2017·浙江温州一模)如图,在三棱锥D­ABC中,DA=DB=DC,D在底面ABC上的射影为E,AB⊥BC,DF⊥AB于点F.(1)求证:平面ABD⊥平面DEF;(2)若AD⊥DC,AC=4,∠BAC=60°,求直线BE与平面DAB所成角的正弦值.【解析】(1)证明由题意知DE⊥平面ABC,∴AB⊥DE。又AB⊥DF,DE∩DF=D,∴AB⊥平面DEF。∵AB⊂平面ABD,∴平面ABD⊥平面DEF。(2)如图,由DA=DB=DC知EA=EB=EC,∴E是△ABC的外心.又∵AB⊥BC,∴E为AC的中点,过E作EH⊥DF于点H,连接BH,则由(1)知EH⊥平面DAB,∴∠EBH即为BE与平面DAB所成的角.由AC=4,AD⊥DC,∠BAC=60°,得DE=2,EF=eq\r(3),∴DF=eq\r(7),EH=eq\f(2\r(3),\r(7)),∴sin∠EBH=eq\f(EH,BE)=eq\f(\r(21),7)。故直线BE与平面DAB所成角的正弦值为eq\f(\r(21),7).15.(2017·深圳模拟)如图,在四棱锥P­ABCD中,底面ABCD为菱形,PB⊥平面ABCD。(1)若AC=6,BD=8,PB=3,求三棱锥A。PBC的体积;(2)若点E是DP的中点,证明:BD⊥平面ACE.【解析】(1)∵四边形ABCD为菱形,∴BD与AC相互垂直平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论