4.3.2等比数列的前n项和公式课件(2)-高二下学期数学人教A版(2019)选择性必修第二册_第1页
4.3.2等比数列的前n项和公式课件(2)-高二下学期数学人教A版(2019)选择性必修第二册_第2页
4.3.2等比数列的前n项和公式课件(2)-高二下学期数学人教A版(2019)选择性必修第二册_第3页
4.3.2等比数列的前n项和公式课件(2)-高二下学期数学人教A版(2019)选择性必修第二册_第4页
4.3.2等比数列的前n项和公式课件(2)-高二下学期数学人教A版(2019)选择性必修第二册_第5页
已阅读5页,还剩26页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

4.3.2等比数列的前n项和公式(2)复习引入探究1:等比数列前n项和公式的函数特征➱➱当q≠1时,即Sn是n的指数型函数.当q=1时,Sn=na1,即Sn是n的正比例函数.结构特点:qn的系数与常数项互为相反数.练习(1)若等比数列{an}的项数有2n项,则(2)若等比数列{an}的项数有2n+1项,则S奇=a1+a3+a5+…

+a2n-1+a2n+1=a1+(a3+a5+…a2n-1+a2n+1)=a1+q(a2+a4+…+a2n)=a1+qS偶S奇=a1+qS偶S偶=a2+a4+…+a2nS奇=a1+a3+…+a2n-1S偶=a2+a4+…+a2n➱⇔S偶=qS奇⇔➱探究2:等比数列的偶数项和与奇数项和思考2:若{an}是公比为q的等比数列,S偶,S奇分别是数列的偶数项和与奇数项和,则S偶,S奇之间有什么关系?=a1q+a3q+…+a2n-1

q

已知等比数列{an}共有2n项,其和为-240,且(a1+a3+…+a2n-1)-(a2+a4+…+a2n)=80,求公比q.练习例1:

如图,正方形ABCD的边长为5cm,取正方形ABCD各边的中点E,F,G,H,作第2个正方形EFGH,然后再取正方形EFGH各边的中点I,J,K,L,作第3个正方形IJKL,依此方法一直继续下去.例题(1)求从正方形ABCD开始,连续10个正方形的面积之和;(2)如果这个作图过程可以一直继续下去,那么所有这些正方形的面积之和将趋近于多少?课本P38

一个乒乓球从1m高的高度自由落下,每次落下后反弹的高度都是原来高度的0.61倍.(1)当它第6次着地时,经过的总路程是多少(精确到1cm)?(2)至少在第几次着地后,它经过的总路程能达到400cm?练习课本P40例2:去年某地产生的生活垃圾为20万吨,其中14万吨垃圾以填埋方式处理,6万吨垃圾以环保方式处理,预计每年生活垃圾的总量递增5%,同时,通过环保方式处理的垃圾量每年增加1.5万吨.为了确定处理生活垃圾的预算,请写出从今年起n年内通过填埋方式处理的垃圾总量的计算公式,并计算从今年起5年内通过填埋方式处理的垃圾总量(精确到0.1万吨).例题课本P38练习例3:某牧场今年初牛的存栏数为1200,预计以后每年存栏数的增长率为8%,且在每年年底卖出100头牛,设牧场从今年起每年年初的计划存栏数依次为c1,c2,c3,‧‧‧.(1)写出一个递推公式,表示cn+1与cn之间的关系;(2)将(1)中的递推公式表示成cn+1-k=r(cn-k)的形式,其中k,r为常数;(3)求S10=c1+c2+c3+‧‧‧+c10的值(精确到1).例题课本P39①②

比较①②的系数,可得某牛奶厂2015年初有资金1000万元,由于引进了先进生产设备,资金年平均增长率可达到50%.每年年底扣除下一年的消费基金后,剩余资金投入再生产.这家牛奶厂每年应扣除多少消费基金,才能实现经过5年资金达到2000万元的目标(精确到1万元)?练习课本P40随堂检测3.若等比数列{an}共有奇数项,其首项为1,其偶数项和为170,奇数项和为341,则这个数列的公比为____,项数为____.解析:由性质S奇=a1+qS偶可知341=1+170q,所以q=2,即这个等比数列的项数为9.4.某工厂去年产值为a,计划今后5年内每年比上年产值增加10%,则从今年起到第5年,这个厂的总产值为(

)A.1.14a B.11×(1.15-1)aC.1.15a D.10×(1.16-1)a解析:从今年起到第5年,这个厂的总产值为a×1.1+a×1.12+a×1.13+a×1.14+a×1.15(2)至少经过几年,旅游业的总收入才能超过总投入?解:旅游业的总收入超过总投入,即bn-an>0,故至少经过5年,旅游业的总收入才能超过总投入.1.等比数列前n项和公式Sn的函数特征:当q=1时,Sn=na1,即Sn是n的正比例函数.当q≠1时,即Sn是n的指数型函数.(1)若等比数列{an}的项数有2n项,则(2)若等比数列{an}的项数有2n+1项,则S奇=a1+qS偶⇔S偶=qS奇⇔2.等比数列的S奇与S偶之间的关系:课堂小结课外作业4.(2)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论