2025届西藏自治区林芝市高三下学期联考数学试题含解析_第1页
2025届西藏自治区林芝市高三下学期联考数学试题含解析_第2页
2025届西藏自治区林芝市高三下学期联考数学试题含解析_第3页
2025届西藏自治区林芝市高三下学期联考数学试题含解析_第4页
2025届西藏自治区林芝市高三下学期联考数学试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届西藏自治区林芝市高三下学期联考数学试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列四个图象可能是函数图象的是()A. B. C. D.2.已知函数满足,且,则不等式的解集为()A. B. C. D.3.已知函数,,其中为自然对数的底数,若存在实数,使成立,则实数的值为()A. B. C. D.4.已知m,n是两条不同的直线,,是两个不同的平面,给出四个命题:①若,,,则;②若,,则;③若,,,则;④若,,,则其中正确的是()A.①② B.③④ C.①④ D.②④5.如图,点E是正方体ABCD-A1B1C1D1的棱DD1的中点,点F,M分别在线段AC,BD1(不包含端点)上运动,则()A.在点F的运动过程中,存在EF//BC1B.在点M的运动过程中,不存在B1M⊥AEC.四面体EMAC的体积为定值D.四面体FA1C1B的体积不为定值6.给出下列三个命题:①“”的否定;②在中,“”是“”的充要条件;③将函数的图象向左平移个单位长度,得到函数的图象.其中假命题的个数是()A.0 B.1 C.2 D.37.已知是球的球面上两点,,为该球面上的动点.若三棱锥体积的最大值为36,则球的表面积为()A. B. C. D.8.已知分别为双曲线的左、右焦点,过的直线与双曲线的左、右两支分别交于两点,若,则双曲线的离心率为()A. B.4 C.2 D.9.命题:存在实数,对任意实数,使得恒成立;:,为奇函数,则下列命题是真命题的是()A. B. C. D.10.在中,,则=()A. B.C. D.11.函数的大致图象为()A. B.C. D.12.直线l过抛物线的焦点且与抛物线交于A,B两点,则的最小值是A.10 B.9 C.8 D.7二、填空题:本题共4小题,每小题5分,共20分。13.在数列中,已知,则数列的的前项和为__________.14.已知,若的展开式中的系数比x的系数大30,则______.15.已知集合,则____________.16.在的展开式中,的系数为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知数列和满足:.(1)求证:数列为等比数列;(2)求数列的前项和.18.(12分)在正三棱柱ABCA1B1C1中,已知AB=1,AA1=2,E,F,G分别是棱AA1,AC和A1C1的中点,以为正交基底,建立如图所示的空间直角坐标系F-xyz.(1)求异面直线AC与BE所成角的余弦值;(2)求二面角F-BC1-C的余弦值.19.(12分)在平面直角坐标系xOy中,曲线的参数方程为(,为参数),在以O为极点,x轴的正半轴为极轴的极坐标系中,曲线是圆心在极轴上,且经过极点的圆.已知曲线上的点M对应的参数,射线与曲线交于点.(1)求曲线,的直角坐标方程;(2)若点A,B为曲线上的两个点且,求的值.20.(12分)已知等差数列{an}的前n项和为Sn,且(1)求数列{a(2)求数列{1Sn}的前21.(12分)已知函数,.(1)求曲线在点处的切线方程;(2)求函数的单调区间;(3)判断函数的零点个数.22.(10分)已知函数.(1)若函数不存在单调递减区间,求实数的取值范围;(2)若函数的两个极值点为,,求的最小值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】

首先求出函数的定义域,其函数图象可由的图象沿轴向左平移1个单位而得到,因为为奇函数,即可得到函数图象关于对称,即可排除A、D,再根据时函数值,排除B,即可得解.【详解】∵的定义域为,其图象可由的图象沿轴向左平移1个单位而得到,∵为奇函数,图象关于原点对称,∴的图象关于点成中心对称.可排除A、D项.当时,,∴B项不正确.故选:C【点睛】本题考查函数的性质与识图能力,一般根据四个选择项来判断对应的函数性质,即可排除三个不符的选项,属于中档题.2、B【解析】

构造函数,利用导数研究函数的单调性,即可得到结论.【详解】设,则函数的导数,,,即函数为减函数,,,则不等式等价为,则不等式的解集为,即的解为,,由得或,解得或,故不等式的解集为.故选:.【点睛】本题主要考查利用导数研究函数单调性,根据函数的单调性解不等式,考查学生分析问题解决问题的能力,是难题.3、A【解析】令f(x)﹣g(x)=x+ex﹣a﹣1n(x+1)+4ea﹣x,令y=x﹣ln(x+1),y′=1﹣=,故y=x﹣ln(x+1)在(﹣1,﹣1)上是减函数,(﹣1,+∞)上是增函数,故当x=﹣1时,y有最小值﹣1﹣0=﹣1,而ex﹣a+4ea﹣x≥4,(当且仅当ex﹣a=4ea﹣x,即x=a+ln1时,等号成立);故f(x)﹣g(x)≥3(当且仅当等号同时成立时,等号成立);故x=a+ln1=﹣1,即a=﹣1﹣ln1.故选:A.4、D【解析】

根据面面垂直的判定定理可判断①;根据空间面面平行的判定定理可判断②;根据线面平行的判定定理可判断③;根据面面垂直的判定定理可判断④.【详解】对于①,若,,,,两平面相交,但不一定垂直,故①错误;对于②,若,,则,故②正确;对于③,若,,,当,则与不平行,故③错误;对于④,若,,,则,故④正确;故选:D【点睛】本题考查了线面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,属于基础题.5、C【解析】

采用逐一验证法,根据线线、线面之间的关系以及四面体的体积公式,可得结果.【详解】A错误由平面,//而与平面相交,故可知与平面相交,所以不存在EF//BC1B错误,如图,作由又平面,所以平面又平面,所以由//,所以,平面所以平面,又平面所以,所以存在C正确四面体EMAC的体积为其中为点到平面的距离,由//,平面,平面所以//平面,则点到平面的距离即点到平面的距离,所以为定值,故四面体EMAC的体积为定值错误由//,平面,平面所以//平面,则点到平面的距离即为点到平面的距离,所以为定值所以四面体FA1C1B的体积为定值故选:C【点睛】本题考查线面、线线之间的关系,考验分析能力以及逻辑推理能力,熟练线面垂直与平行的判定定理以及性质定理,中档题.6、C【解析】

结合不等式、三角函数的性质,对三个命题逐个分析并判断其真假,即可选出答案.【详解】对于命题①,因为,所以“”是真命题,故其否定是假命题,即①是假命题;对于命题②,充分性:中,若,则,由余弦函数的单调性可知,,即,即可得到,即充分性成立;必要性:中,,若,结合余弦函数的单调性可知,,即,可得到,即必要性成立.故命题②正确;对于命题③,将函数的图象向左平移个单位长度,可得到的图象,即命题③是假命题.故假命题有①③.故选:C【点睛】本题考查了命题真假的判断,考查了余弦函数单调性的应用,考查了三角函数图象的平移变换,考查了学生的逻辑推理能力,属于基础题.7、C【解析】

如图所示,当点C位于垂直于面的直径端点时,三棱锥的体积最大,设球的半径为,此时,故,则球的表面积为,故选C.考点:外接球表面积和椎体的体积.8、A【解析】

由已知得,,由已知比值得,再利用双曲线的定义可用表示出,,用勾股定理得出的等式,从而得离心率.【详解】.又,可令,则.设,得,即,解得,∴,,由得,,,该双曲线的离心率.故选:A.【点睛】本题考查求双曲线的离心率,解题关键是由向量数量积为0得出垂直关系,利用双曲线的定义把双曲线上的点到焦点的距离都用表示出来,从而再由勾股定理建立的关系.9、A【解析】

分别判断命题和的真假性,然后根据含有逻辑联结词命题的真假性判断出正确选项.【详解】对于命题,由于,所以命题为真命题.对于命题,由于,由解得,且,所以是奇函数,故为真命题.所以为真命题.、、都是假命题.故选:A【点睛】本小题主要考查诱导公式,考查函数的奇偶性,考查含有逻辑联结词命题真假性的判断,属于基础题.10、B【解析】

在上分别取点,使得,可知为平行四边形,从而可得到,即可得到答案.【详解】如下图,,在上分别取点,使得,则为平行四边形,故,故答案为B.【点睛】本题考查了平面向量的线性运算,考查了学生逻辑推理能力,属于基础题.11、A【解析】

利用特殊点的坐标代入,排除掉C,D;再由判断A选项正确.【详解】,排除掉C,D;,,,.故选:A.【点睛】本题考查了由函数解析式判断函数的大致图象问题,代入特殊点,采用排除法求解是解决这类问题的一种常用方法,属于中档题.12、B【解析】

根据抛物线中过焦点的两段线段关系,可得;再由基本不等式可求得的最小值.【详解】由抛物线标准方程可知p=2因为直线l过抛物线的焦点,由过抛物线焦点的弦的性质可知所以因为为线段长度,都大于0,由基本不等式可知,此时所以选B【点睛】本题考查了抛物线的基本性质及其简单应用,基本不等式的用法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】

由已知数列递推式可得数列的所有奇数项与偶数项分别构成以2为公比的等比数列,求其通项公式,得到,再由求解.【详解】解:由,得,,则数列的所有奇数项与偶数项分别构成以2为公比的等比数列.,..故答案为:.【点睛】本题考查数列递推式,考查等差数列与等比数列的通项公式,训练了数列的分组求和,属于中档题.14、2【解析】

利用二项展开式的通项公式,二项式系数的性质,求得的值.【详解】展开式通项为:且的展开式中的系数比的系数大,即:解得:(舍去)或本题正确结果:【点睛】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.15、【解析】

根据并集的定义计算即可.【详解】由集合的并集,知.故答案为:【点睛】本题考查集合的并集运算,属于容易题.16、【解析】

根据二项展开式定理,求出含的系数和含的系数,相乘即可.【详解】的展开式中,所求项为:,的系数为.

故答案为:.【点睛】本题考查二项展开式定理的应用,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解析】

(1)根据题目所给递推关系式得到,由此证得数列为等比数列.(2)由(1)求得数列的通项公式,判断出,由此利用裂项求和法求得数列的前项和.【详解】(1)所以数列是以3为首项,以3为公比的等比数列.(2)由(1)知,∴为常数列,且,∴,∴∴【点睛】本小题主要考查根据递推关系式证明等比数列,考查裂项求和法,属于中档题.18、(1).(2).【解析】

(1)先根据空间直角坐标系,求得向量和向量的坐标,再利用线线角的向量方法求解.(2)分别求得平面BFC1的一个法向量和平面BCC1的一个法向量,再利用面面角的向量方法求解.【详解】规范解答(1)因为AB=1,AA1=2,则F(0,0,0),A,C,B,E,所以=(-1,0,0),=记异面直线AC和BE所成角为α,则cosα=|cos〈〉|==,所以异面直线AC和BE所成角的余弦值为.(2)设平面BFC1的法向量为=(x1,y1,z1).因为=,=,则取x1=4,得平面BFC1的一个法向量为=(4,0,1).设平面BCC1的法向量为=(x2,y2,z2).因为=,=(0,0,2),则取x2=得平面BCC1的一个法向量为=(,-1,0),所以cos〈〉==根据图形可知二面角F-BC1-C为锐二面角,所以二面角F-BC1-C的余弦值为.【点睛】本题主要考查了空间向量法研究空间中线线角,面面角的求法,还考查了转化化归的思想和运算求解的能力,属于中档题.19、(1)..(2)【解析】

(1)先求解a,b,消去参数,即得曲线的直角坐标方程;再求解,利用极坐标和直角坐标的互化公式,即得曲线的直角坐标方程;(2)由于,可设,,代入曲线直角坐标方程,可得的关系,转化,可得解.【详解】(1)将及对应的参数,代入得,即,所以曲线的方程为,为参数,所以曲线的直角坐标方程为.设圆的半径为R,由题意,圆的极坐标方程为(或),将点代入,得,即,所以曲线的极坐标方程为,所以曲线的直角坐标方程为.(2)由于,故可设,代入曲线直角坐标方程,可得,,所以.【点睛】本题考查了极坐标和直角坐标,参数方程和一般方程的互化以及极坐标的几何意义的应用,考查了学生综合分析,转化划归,数学运算的能力,属于中档题.20、(1)an=2n【解析】

(1)先设出数列的公差为d,结合题中条件,求出首项和公差,即可得出结果.(2)利用裂项相消法求出数列的和.【详解】解:(1)设公差为d的等差数列{an}且a1+a则有:a1解得:a1=3,所以:a(2)由于:an所以:Sn则:1S则:Tn=1【点睛】本题考查的知识要点:数列的通项公式的求法及应用,裂项相消法在数列求和中的应用,主要考查学生的运算能力和转化能力,属于基础题型.21、(1)(2)答案见解析(3)答案见解析【解析】

(1)设曲线在点,处的切线的斜率为,可求得,,利用直线的点斜式方程即可求

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论