版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省泰安九中2025届高考数学五模试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正四棱锥的侧棱长与底面边长都相等,是的中点,则所成的角的余弦值为()A. B. C. D.2.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,则这两个平面相互平行;②若一个平面经过另一个平面的垂线,则这两个平面相互垂直;③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,为真命题的是()A.①和②B.②和③C.③和④D.②和④3.设是虚数单位,则()A. B. C. D.4.对于正在培育的一颗种子,它可能1天后发芽,也可能2天后发芽,….下表是20颗不同种子发芽前所需培育的天数统计表,则这组种子发芽所需培育的天数的中位数是()发芽所需天数1234567种子数43352210A.2 B.3 C.3.5 D.45.已知三棱锥的所有顶点都在球的球面上,平面,,若球的表面积为,则三棱锥的体积的最大值为()A. B. C. D.6.已知随机变量X的分布列如下表:X01Pabc其中a,b,.若X的方差对所有都成立,则()A. B. C. D.7.在三棱锥中,,且分别是棱,的中点,下面四个结论:①;②平面;③三棱锥的体积的最大值为;④与一定不垂直.其中所有正确命题的序号是()A.①②③ B.②③④ C.①④ D.①②④8.已知复数,则()A. B. C. D.29.已知函数f(x)=eb﹣x﹣ex﹣b+c(b,c均为常数)的图象关于点(2,1)对称,则f(5)+f(﹣1)=()A.﹣2 B.﹣1 C.2 D.410.已知等差数列的前项和为,若,则等差数列公差()A.2 B. C.3 D.411.已知函数的图像的一条对称轴为直线,且,则的最小值为()A. B.0 C. D.12.已知某几何体的三视图如图所示,其中正视图与侧视图是全等的直角三角形,则该几何体的各个面中,最大面的面积为()A.2 B.5 C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的图象向右平移个单位后,与函数的图象重合,则_____.14.在长方体中,,,,为的中点,则点到平面的距离是______.15.如图在三棱柱中,,,,点为线段上一动点,则的最小值为________.16.曲线在点(1,1)处的切线与轴及直线=所围成的三角形面积为,则实数=____。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知△ABC的内角A,B,C的对边分别为a,b,c,若c=2a,bsinB﹣asinA=asinC.(Ⅰ)求sinB的值;(Ⅱ)求sin(2B+)的值.18.(12分)设都是正数,且,.求证:.19.(12分)在四棱锥中,底面是平行四边形,为其中心,为锐角三角形,且平面底面,为的中点,.(1)求证:平面;(2)求证:.20.(12分)等差数列的前项和为,已知,.(Ⅰ)求数列的通项公式及前项和为;(Ⅱ)设为数列的前项的和,求证:.21.(12分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),若直线与圆相切,求实数的值.22.(10分)已知函数.(1)求函数的零点;(2)设函数的图象与函数的图象交于,两点,求证:;(3)若,且不等式对一切正实数x恒成立,求k的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】试题分析:设的交点为,连接,则为所成的角或其补角;设正四棱锥的棱长为,则,所以,故C为正确答案.考点:异面直线所成的角.2、D【解析】
利用线面平行和垂直,面面平行和垂直的性质和判定定理对四个命题分别分析进行选择.【详解】当两个平面相交时,一个平面内的两条直线也可以平行于另一个平面,故①错误;由平面与平面垂直的判定可知②正确;空间中垂直于同一条直线的两条直线还可以相交或者异面,故③错误;若两个平面垂直,只有在一个平面内与它们的交线垂直的直线才与另一个平面垂直,故④正确.综上,真命题是②④.故选:D【点睛】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查空间想象能力,是中档题.3、A【解析】
利用复数的乘法运算可求得结果.【详解】由复数的乘法法则得.故选:A.【点睛】本题考查复数的乘法运算,考查计算能力,属于基础题.4、C【解析】
根据表中数据,即可容易求得中位数.【详解】由图表可知,种子发芽天数的中位数为,故选:C.【点睛】本题考查中位数的计算,属基础题.5、B【解析】
由题意画出图形,设球0得半径为R,AB=x,AC=y,由球0的表面积为20π,可得R2=5,再求出三角形ABC外接圆的半径,利用余弦定理及基本不等式求xy的最大值,代入棱锥体积公式得答案.【详解】设球的半径为,,,由,得.如图:设三角形的外心为,连接,,,可得,则.在中,由正弦定理可得:,即,由余弦定理可得,,.则三棱锥的体积的最大值为.故选:.【点睛】本题考查三棱锥的外接球、三棱锥的侧面积、体积,基本不等式等基础知识,考查空间想象能力、逻辑思维能力、运算求解能力,考查数学转化思想方法与数形结合的解题思想方法,是中档题.6、D【解析】
根据X的分布列列式求出期望,方差,再利用将方差变形为,从而可以利用二次函数的性质求出其最大值为,进而得出结论.【详解】由X的分布列可得X的期望为,又,所以X的方差,因为,所以当且仅当时,取最大值,又对所有成立,所以,解得,故选:D.【点睛】本题综合考查了随机变量的期望、方差的求法,结合了概率、二次函数等相关知识,需要学生具备一定的计算能力,属于中档题.7、D【解析】
①通过证明平面,证得;②通过证明,证得平面;③求得三棱锥体积的最大值,由此判断③的正确性;④利用反证法证得与一定不垂直.【详解】设的中点为,连接,则,,又,所以平面,所以,故①正确;因为,所以平面,故②正确;当平面与平面垂直时,最大,最大值为,故③错误;若与垂直,又因为,所以平面,所以,又,所以平面,所以,因为,所以显然与不可能垂直,故④正确.故选:D【点睛】本小题主要考查空间线线垂直、线面平行、几何体体积有关命题真假性的判断,考查空间想象能力和逻辑推理能力,属于中档题.8、C【解析】
根据复数模的性质即可求解.【详解】,,故选:C【点睛】本题主要考查了复数模的性质,属于容易题.9、C【解析】
根据对称性即可求出答案.【详解】解:∵点(5,f(5))与点(﹣1,f(﹣1))满足(5﹣1)÷2=2,故它们关于点(2,1)对称,所以f(5)+f(﹣1)=2,故选:C.【点睛】本题主要考查函数的对称性的应用,属于中档题.10、C【解析】
根据等差数列的求和公式即可得出.【详解】∵a1=12,S5=90,∴5×12+d=90,解得d=1.故选C.【点睛】本题主要考查了等差数列的求和公式,考查了推理能力与计算能力,属于中档题.11、D【解析】
运用辅助角公式,化简函数的解析式,由对称轴的方程,求得的值,得出函数的解析式,集合正弦函数的最值,即可求解,得到答案.【详解】由题意,函数为辅助角,由于函数的对称轴的方程为,且,即,解得,所以,又由,所以函数必须取得最大值和最小值,所以可设,,所以,当时,的最小值,故选D.【点睛】本题主要考查了正弦函数的图象与性质,其中解答中利用三角恒等变换的公式,化简函数的解析式,合理利用正弦函数的对称性与最值是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.12、D【解析】
根据三视图还原出几何体,找到最大面,再求面积.【详解】由三视图可知,该几何体是一个三棱锥,如图所示,将其放在一个长方体中,并记为三棱锥.,,,故最大面的面积为.选D.【点睛】本题主要考查三视图的识别,复杂的三视图还原为几何体时,一般借助长方体来实现.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
根据函数图象的平移变换公式求得变换后的函数解析式,再利用诱导公式求得满足的方程,结合题中的范围即可求解.【详解】由函数图象的平移变换公式可得,函数的图象向右平移个单位后,得到的函数解析式为,因为函数,所以函数与函数的图象重合,所以,即,因为,所以.故答案为:【点睛】本题考查函数图象的平移变换和三角函数的诱导公式;诱导公式的灵活运用是求解本题的关键;属于中档题.14、【解析】
利用等体积法求解点到平面的距离【详解】由题在长方体中,,,所以,所以,设点到平面的距离为,解得故答案为:【点睛】此题考查求点到平面的距离,通过在三棱锥中利用等体积法求解,关键在于合理变换三棱锥的顶点.15、【解析】
把绕着进行旋转,当四点共面时,运用勾股定理即可求得的最小值.【详解】将以为轴旋转至与面在一个平面,展开图如图所示,若,,三点共线时最小为,为直角三角形,故答案为:【点睛】本题考查了空间几何体的翻折,平面内两点之间线段最短,解直角三角形进行求解,考查了空间想象能力和计算能力,属于中档题.16、或1【解析】
利用导数的几何意义,可得切线的斜率,以及切线方程,求得切线与轴和的交点,由三角形的面积公式可得所求值.【详解】的导数为,可得切线的斜率为3,切线方程为,可得,可得切线与轴的交点为,,切线与的交点为,可得,解得或。【点睛】本题主要考查利用导数求切线方程,以及直线方程的运用,三角形的面积求法。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)【解析】
(Ⅰ)根据条件由正弦定理得,又c=2a,所以,由余弦定理算出,进而算出;(Ⅱ)由二倍角公式算出,代入两角和的正弦公式计算即可.【详解】(Ⅰ)bsinB﹣asinA=asinC,所以由正弦定理得,又c=2a,所以,由余弦定理得:,又,所以;(Ⅱ),.【点睛】本题主要考查了正余弦定理的应用,运用二倍角公式和两角和的正弦公式求值,考查了学生的运算求解能力.18、证明见解析【解析】
利用比较法进行证明:把代数式展开、作差、化简可得,,可证得成立,同理可证明,由此不等式得证.【详解】证明:因为,,所以,∴成立,又都是正数,∴,①同理,∴.【点睛】本题考查利用比较法证明不等式;考查学生的逻辑推理能力和运算求解能力;把差变形为因式乘积的形式是证明本题的关键;属于中档题。19、(1)证明见解析(2)证明见解析【解析】
(1)通过证明,即可证明线面平行;(2)通过证明平面,即可证明线线垂直.【详解】(1)连,因为为平行四边形,为其中心,所以,为中点,又因为为中点,所以,又平面,平面所以,平面;(2)作于因为平面平面,平面平面,平面,所以,平面又平面,所以又,,平面,平面所以,平面,又平面,所以,.【点睛】此题考查证明线面平行和线面垂直,通过线面垂直得线线垂直,关键在于熟练掌握相关判定定理,找出平行关系和垂直关系证明.20、(Ⅰ),(Ⅱ)见解析【解析】
(Ⅰ)根据等差数列公式直接计算得到答案.(Ⅱ),根据裂项求和法计算得到得到证明.【详解】(Ⅰ)等差数列的公差为,由,得,,即,,解得,.∴,.(Ⅱ),∴,∴,即.【点睛】本题考查了等差数列的基本量的计算,裂项求和,意在考查学生对于数列公式方法的灵活运用.21、【解析】
将圆的极坐标方程化为直角坐标方程,直线的参数方程化为普通方程,再根据直线与圆相切,利用圆心到直线的距离等于半径,即可求实数的值.【详解】由,得,,即圆的方程为,又由消,得,直线与圆相切,,.【点睛】本题重点考查方程的互化,考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离等于半径,研究直线与圆相切.22、(1)x=1(2)证明见解析(3)【解析】
(1)令,根据导函数确定函数的单调区间,求出极小值,进而求解;(2)转化思想,要证,即证,即证,构造函数进而求证;(3)不等式对一切正实数恒成立,,设,分类讨论进而求解.【详解】解:(1)令,所以,当时,,在上单调递增;当时,,在单调递
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 油气管道维护工8S考核试卷含答案
- 2025隔热板材新品研发市场竞争格局分析报告
- 2025长途运输行业市场现状供需分析及投资评估规划发展报告
- 山西2026年中医外科学卫生职称(主治医师)模拟练习题及答案解析
- 2025长三角经济带发展现状评估市场需求分析投资布局规划评估发展报告
- 装岩机司机创新实践能力考核试卷含答案
- 2025邮政物流行业市场发展现状及跨境电商配套规划分析报告
- 2025邮政快递行业运营模式创新与市场投资规划分析报告
- 2026年卫生专业技术资格考试神经电生理(脑电图)技术训练题及答案解析
- 2025中国电信滨海分公司招聘2人笔试考试参考题库及答案解析
- 纽恩泰空气能知识培训课件
- 人工智能+区域协调区域经济一体化可行性分析
- 生物医药研发投入风险分析与可行性研究报告
- 恶性肿瘤患者膳食指导
- 智慧树知道网课《齐鲁名家 谈方论药》课后章节测试答案
- 2025年儿科副主任年度考核个人总结
- 多重耐药感染防控PDCA培训
- 第八章-波导间耦合
- 输水渠道预制衬砌板施工规程(DB37-T 3921-2020)
- 软件产品安全知识培训课件
- 工业生产安全管理中存在问题及整改措施
评论
0/150
提交评论