版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2
Contents
Acknowledgement 3
Abstract 4
Preface 4
KT'sAITransformationutilizingAgentandData 4
NTTDOCOMO'sStrategicJourneytowardsDigitalTransformationandEnhanced
CustomerExperience 5
ChinaMobile'sTransitiontoAI+toAmplifyScaleEmpowerment 5
1LLMAdoptionStrategiesinIndustry 6
2EmergingChallengesandTechnicalForesights 7
2.1AIApplicationPerspective 7
2.2DataFuelingPerspective 9
3ApplicationToolingPlatforms 11
3.1ChinaMobileJiutianLargeLanguageModelApplicationPlatform 11
3.2DOCOMOLLMValue-AddedPlatform 12
3.3KTSLM/LLMPlatform 13
4GenerativeAIApplicationCases 14
4.1GenerativeAIforNetworkO&M 14
4.2GenerativeAIforCustomerService 17
5FutureOutlookandIndustrySuggestions 21
6Abbreviations 22
3
Acknowledgement
SCFAwasestablishedin2011byChinaMobile,Korea'sKT,andJapan'sNTTDOCOMO,aimingtopromoteatripartitecooperationframeworkforglobaltechnologystandardsandindustryecosystems.
In2022,theAIWorkgroupwasestablished,focusingonthedevelopmentandapplicationofAItechnology,promotingtechnicalexchangesamongmembercompanies,andguidingandfacilitatingtheapplicationandcooperationofAItechnologywithintheindustry.
ThisWhitePaperhasbeenproducedasacollectiveeffortwithintheSCFAAIWG,andonitsbehalfthefollowingeditingteam(listedinalphabeticalorder):
ChinaMobile:
LingliDeng,BoYuan,XuefengZhao,XiangyangYuan,DiJin
KT:
JiyoungKim,JaehoOh
NTTDOCOMO:
IsseiNakamura,KuanyinLiu,AoguYamada,SatomiKura,TakeshiKato
SCFAAIWG
ChinaMobileContact:
liukaixi@
KTContact:
zeeyoung.kim@
NTTDOCOMOContact:
issei.nakamura.zs@
4
Abstract
ThisdocumentanalyzesthechallengesofscaleadoptionofLargeLanguageModels(LLMs)intoindustrialapplications,highlightingtheproblemofreinventingthewheelofcommoncapabilities,theperformancebottleneckofnetworkcommunication,theimprovementofproductivitybyutilizingwork-orientedSLM/LLMbasedAIagents,andproposestechnologicaldevelopmenttrendssuchasinnovationinfundamentalalgorithms,standardizationofapplicationtoolplatforms,andCloud-Edgecollaboration.ItshowcasescontributingCSPs’strategiclayoutinAItechnology,dataintegration,applicationtoolingplatforms,aswellasavarietyofgenerativeAIapplications,andlooksforwardtothefuturedevelopmentofAItechnology,dataintegrationandindustrycollaborationrecommendations.
Preface
KT'sAITransformationutilizingAgentandData
WiththerapidadvancementofAIHWandSWtechnologies,generativeAImodelsareevolvingintovariousversions.Alongsidethis,generativeAIAgentsareswiftlypermeatingourdailylives.TheparadigmshiftstoapracticalAIAgentcompetition,reflectingusers'GenAIdemands,iscloselyrelatedtothehandlingandaccommodationofextensivecustomerdata.AsAIadvances,theimportanceofdataincorporateactivitieshasbecomeevengreater,andData-drivenAIAgentsbasedoncustomersandcompaniesareatthecenterof"CorporateTransformationUsingAI".TosucceedinAX,itisessentialtocollectandutilizedatafromcorporateactivitieseffectively,andtheprimaryinnovationofAIcompaniesmustbedrivenbyData-drivenAX.
Inthe"EraofAIAgents",whereAIisbecomingcentraltocorporateandpersonaldailyservices,KTispursuingtheenhancementofAIcompetitivenessusingAIAgentsasoneofitssuccessfultransformationdirectionsintoanAICTcompany.Underthemulti-modelline-upstrategy,whichcombinesitsself-developedAIlanguagemodelMi:dmwithmodelsbasedonopen-source,KTaimstoprovideavarietyofcustomer/industry-specificmodelsandAIAgentstothemarket,basedonhigh-qualitydatalearningandutilization.KTismovingforwardwiththegoalofenhancingproductivitybyutilizingworkAIAgentsforitsemployees,anditalsoplanstospreadnewAIexperiencestocustomersbyapplyingthemtoitsGenieTV.BydevelopingtheseAIAgentsandlaunchingservices,KTexpectstosecurecustomerAIdataandconceivespecificAIbusinessmodelsutilizingthedata.StrengtheningAIMSPcompetitivenessbyprovidingModelasaServicecomprehensivelyandthroughglobalAIAgenttechnology/businesscooperation,KTwillleadtheAImarketandecosystemconstruction.
5
NTTDOCOMO'sStrategicJourneytowardsDigitalTransformationandEnhancedCustomerExperience
NTTDOCOMO(DOCOMO)setthegoalofimprovingcustomerexperienceandreformingbusinessstructurewithdigitalizationofbusinessmanagement,andpromotionandexecutionofdatautilizationasourmedium-termstrategytoward2025.InitiativesindigitaltransformationatDOCOMOincludenetworkoptimizationthroughdatautilization,AIandhumanresourcetraining,andthepromotionofdigitalmarketing.AIplatformsforimagerecognition,voicerecognition,andcustomeranalysisarebeingofferedtoenhanceDOCOMO'scompetitivenessbyapplyingthesetechnologiestoitsservices.
Since2014,DOCOMOhasbeenbuildingabigdatainfrastructurethatcollectsdatasuchasuserinformation,usagehistory,networktrafficandpaymenthistoryfromalmost100millionusersandmorethan270,000basestationsasanefforttopromotedigitalizationofbusinessmanagementanddatautilization.TheplatformincorporatesexternaldatafrombusinesspartnersandAItechnologiestocreatevalueacrossvariousbusinessfields,suchasMobilityasaService,retail,banking,andthemetaverse.
LeveragingnewtechnologieslikegenerativeAItofindnewrevenuestreamsandgrowthebusinessisnotaneasytask.Itrequiresstrategicplanning,includingtrainingpersonnel,andalotoftrialanderror.DOCOMOisnotonlyfocusingondevelopingthefoundationaltechnologiesforgenerativeAIbutisalsoactivelyworkingonvariousinitiativestocreateusecasesandtrainpersonnelthroughcontinuousexperimentationandrefinement.
ChinaMobile'sTransitiontoAI+toAmplifyScaleEmpowerment
Inthefaceofthewaveofchange,ChinaMobile,asthelargestmobilecommunicationoperatorintheworld,hasalwaysanchoreditsstrategicpositioningof"world-classinformationservicetechnologyinnovationcompany".
Intermsofnetworkcomputinginfrastructure,acommunicationnetworkwiththewidestcoverageandthelargestuserscaleintheworldhasbeenbuilt,withmorethan1.9million5Gbasestationsaccountingfor30%oftheworld'stotal,over90landandseacablesystemsconnecting78countries,andthelargestsingleintelligentcomputingcenterofglobaloperatorswith18000GPUcards.
Jiutian,aseriesoflargefoundationmodelsoflanguage,vision,voice,structureddataandmulti-modalityhavebeenconstructed,ontopofwhichmorethan40largeindustrymodelsarelaunched,formingacomprehensiveAIportfolioincludingplatforms,capabilities,andlarge-scaleapplications.Over10,000"AI+"projectshavebeenlaunchedtopromotetheintelligentandgreendevelopmentofvariousindustries,suchasenergy,manufacturing,medicalcaring,transportationandothers.
Alongtheway,itisnoticedthatthetransitionto"AI+"signifiestheshiftofAItechnologyfromameretechnicalapplicationtoacomprehensiveempowermentdeeplyintegratedintoindustrialdevelopment.Thechallengesfacedinthisprocessincludethe
6
limitationsofLLMsincriticaltaskexecution,thewasteofresourcescausedbytherepetitivedevelopmentofcommoncapabilities,andthebottleneckeffectofnetworkcommunication.
Toaddressthesechallenges,ChinaMobilecallsonallpartiesintheindustrytoworktogetherinbuildingacomprehensive"AI+"industryecosystemtopromoteinnovationsatthefundamentalalgorithmlevel,standardizationofapplicationtoolingplatforms,andnewmodelsofCloud-Edgecollaboration
1LLMAdoptionStrategiesinIndustry
Artificialintelligence,representingthenewgenerationofinformationtechnology,israpidlyemergingasasignificantdrivingforcefornewqualityproductivity.Amongthese,generativeAItechnologybasedonLLMsissignificantlyempoweringvariousindustries,leadingtoanexplosivegrowthintheapplicationofAImodelsacrossindustries,heraldingthearrivalofatechnologicalandindustrialrevolution,wheretheinformationservicesystemandtheeconomicandsocialoperationsystemsaredeeplyintegrated,profoundlychangingpeople'slifestylesandmodesofproduction.
LLMshavedemonstratedextensiveandprofoundimpactsoncurrentindustrialapplications,emergingaspivotaltoolsinthedigitaltransformationofenterprises.Fromknowledgemanagementtohandlingcomplextasks,LLMsareprogressivelyintegratingintocorebusinessprocesses.Onenotableapplicationisretrieval-augmentedgeneration(RAG),whichcombinesexternalknowledgebaseswithgenerativecapabilitiestoeffectivelyaddresscomplexqueries.Thisapproachisparticularlyeffectiveincustomerservice,whereLLMsassistcompaniesinextractingpreciseanswersfrommassiveinternaldocuments,therebyenhancingserviceefficiency.Moreover,LLMsplayasignificantroleinbuildingandmanagingenterpriseknowledgebases,facilitatingintelligentqueryingandupdatingthroughnaturallanguageunderstandingandknowledgeextraction.Inhandlingcomplextasks,LLMsexhibitpowerfulcapabilitiessuchasautomatedreportwriting,marketingcopygeneration,andcodegeneration,significantlyboostingproductivityandautomatingbusinessprocesses.LLMshavealsofoundwidespreaduseinautomatedcustomerservicesystems,wheretheirdeepunderstandingofnaturallanguageallowsthemtohandlecomplexcustomerintentionsandcontextualinteractionsbeyondthereachoftraditionalchatbots.Additionally,LLMscontributetopersonalizedrecommendationsbygeneratingcustomizedcontent,offeringprecisesuggestionsthathelpbusinessesachievehighercustomersatisfaction.Torealizetheseapplications,LLMsleveragevarioustechniquestooptimizetheirperformanceinspecificscenarios.TheadoptionofLLMsinindustrycanproceedindifferentways,dependingonthetechnologicalrequirementsandapplicationcontext.Forapplicationswithlowertechnicalbarriers,enterprisescanquicklydeployL0andL1modelsbyintegratingdomain-specificknowledgebases,makingthisapproachsuitableforscenariosthatrequirerapidimplementationwithoutintensivemodeloptimization.Inscenariosrequiringdomain-specificcustomization,L0modelscanbefine-tunedbyuploadingcustomizeddatasetsandapplyinglow-codeconfigurationtoproduceL1modelsadaptedtospecifictasks.Thismethodsuitssituationswheredata
7
accumulationandmodeladaptabilityareneeded,allowingformorepreciseresponsestoparticularbusinessrequirements.Forapplicationswithhighertechnicaldemandsandmorecomplexcontexts,enterprisescanadoptacomprehensivemodeldevelopmentprocess,encompassingdatacollection,processing,pre-training,andfine-tuning,ensuringmodelperformanceandstabilityinintricateapplicationsandmeetingtheneedsofhigh-precision,high-reliabilityoperations.Furthermore,LLMdeploymentcanberealizedthroughmulti-modelconvergenceplatforms,enablingbroadercollaborativeapplications.Enterprisescanutilizemodularpluginsandcentralizedagentstobuildcomplexbusinesssystemsthatintegratemultiplemodels,therebyfacilitatingcross-industryapplicationexpansionandfulfillingtherequirementsofsophisticatedapplicationecosystems.
Inconclusion,theindustrialdeploymentofLLMsspansfrombasicknowledgebaseintegrationtofull-scalemodelcustomizationandmulti-modelmanagement,creatingamulti-layeredapplicationsystemthatrangesfromlowtechnicalbarrierstohighlycustomizedimplementations.Throughthesediverseapproaches,LLMsaredrivingthedevelopmentofintelligentindustries,providingflexibleandpersonalizedsolutionsacrosssectors,andempoweringenterpriseswithefficientoperationsandintelligentdecision-makingcapabilities.
2EmergingChallengesandTechnicalForesights
Withthein-depthdevelopmentofthefourthindustrialrevolutioncharacterizedbydigitalintelligence,thereisaforeseeabletrendofthemutualembracebetweentraditionalindustriesandAItechnologytoaddressemergingchallengesforLLMscaleadoption:ontheonehand,thedeepeningintegrationofindustryinformationresourcesanddatagovernanceempowerstheinnovationofLLMapplicationsbyprovidingdesiredrawdatamaterials;ontheotherhand,continuousinnovationinLLMalgorithmsandengineeringtoolsaddressestheapplicabilityandeconomicissuesoflarge-scaleproductionenvironmentapplications.
2.1AIApplicationPerspective
Challenge:Largelanguagemodelscurrentlydonotpossessthecapabilitytobedirectly
appliedinkeydecision-makingprocessesinproductionenvironments.
Foresight:Innovationinbasictheoriesforreasoningacceleration,full-processautonomouscontrolatthefundamentalalgorithmlevel,torealizeautonomouscognition,autonomousevolution,andautonomousbreakthroughofAIagents.
Currently,LLMsserveaspowerfulinformationprocessingtoolscapableofexecutingtaskssuchasnaturallanguageprocessing,imagerecognition,languagetranslation,textgeneration,andimagerecognition.However,largelanguagemodelsthemselveslackenvironmentalperceptioncapabilitiesanddonotpossessautonomyandproactivedecision-makingabilities,usuallyrequiringhumaninputortriggeringtoprocess
8
informationinapresetmanner.Therefore,theyfacedifficultiesinexecutingdynamicandcomplextasks,asthesetaskstypicallyrequireperceptionandunderstandingoftherealworld,theabilitytoadapttoenvironmentalchanges,andmakingdecisionsthatalignwiththegoals.Hencefutureinnovationatthebasicalgorithmlevelwillfocusonthefollowingareas:
lAutonomouscognitionFuturealgorithmswillplacegreateremphasisontheautonomouscognitivecapabilitiesofintelligentagents,enablingthemtobetterunderstandandpredicttheirenvironment,withenhancedperception,reasoning,anddecision-makingcapabilitiesoftheenvironment,aswellasadaptabilityincomplexenvironments.
lAutonomousevolutionAlgorithmswillbedesignedtoevolveontheirown,continuouslyoptimizingtheirperformancethroughmachinelearning.Intelligentagentswillbeabletolearnfromexperience,automaticallyadjusttheirbehaviortoadapttonewtasksandenvironments,therebyimprovingtheirgeneralizationcapabilities.
lAutonomousbreakthroughToachieveahigherlevelofintelligence,algorithmsneedtobeabletoachievebreakthroughsontheirownwithouthumanintervention.Thisinvolvesinnovativealgorithmdesign,enablingAIagentstodiscovernewsolutionsandevensurpasstheperformanceofhumanexpertsinsomecases.
Moreover,tosupportthedevelopmentoftheabovecapabilities,algorithmsandAIagentoperationoptimizationandcontroltechnologyalsoneediterativeinnovation,includingreasoningaccelerationtechnologytoimprovetheresponsivenessandefficiencyofAIagentsforcomplextasks,andfull-processautonomouscontrollablealgorithmstoensuretheirstabilityandreliability.
Challenge:Theverticalrepetitivedevelopmentofalargenumberofcommon
capabilitiesleadstoresourcewasteandslowsupdatesandupgrades.
Foresight:TheriseofapplicationtoolingplatformsservingasLLMsplusdomainspecificknowledgebases,withplugins,tools,enhancingprofessionalcapabilitieswhilenotlosingbasiccapabilitiesforAIagentcustomizationdevelopment.
Inthecurrentfieldofartificialintelligence,wefaceasignificantchallenge,thatis,theverticalrepetitivedevelopmentofalargenumberofcommoncapabilities,whichnotonlyleadstoresourcewastebutalsomakestheprocessofupdatesandupgradesslow.ThisphenomenonisparticularlyprominentintherapidlydevelopingAItechnologybecauseitinvolvesalargeamountofresearchandapplicationdevelopment.
Toaddressthischallenge,itisforeseenthatanimportantdirectionforfuturetechnologicaldevelopmentistheinnovationofapplicationtoolplatforms.Inparticular,AIagentcustomizationanddevelopmentplatformswillbekey,whichcanprovidelow-codesolutionstoenablenon-technicaluserstocreateofficeagents,financialagents,andotherprofessionaltoolseasily.SuchplatformsprovidebasicLLMscombinedwithprofessionalknowledgebases,aswellaspluginsandtools,whichcanenhanceprofessionalcapabilitieswhilekeepingbasiccapabilities.
Throughsuchplatforms,onemaynotonlyreduceresourcewastebutalsoacceleratetheadvancementofAItechnology,therebypromotingthehealthydevelopmentofthe
9
entireindustry.
Challenge:The"bottleneckeffect"ofnetworkinconnectingdataandcloudcomputing
infrastructureishighlightedasthe"lastmile"ofLLMdeploymentanduserempowerment.
Foresight:Cloud-Edgecollaborationisleveragedtoenablepremise(networkedge,hometerminal)personalizedAIagentservices.
Intoday'sdigitalera,thebottleneckeffectofnetworkcommunicationhasbecometherestricting"lastmile"forLLMstoreachandempowerusers.Tosolvethisproblem,itisforeseeablethatthenewmodelofCloud-Edgecollaborationwillbecomemainstream,especiallyontheend-sideofthenetworkedgeandhometerminal,byprovidingpersonalizedintelligentagentservicesasasolution.
Thenetworkedgeandhometerminalontheend-sidearekeylinksintheCloud-Edgecollaboration,andAIagentservicescanbedeployedattheseendpointstoreducethedependenceoncentralizedcloudcomputingresources.Inthisway,datapre-processing,analysis,andresponsecanbeexecutedclosertotheuser,reducingdatatransmissionlatencyandbandwidthrequirements.e.g.,bydeployingintelligentgatewaysathometerminals,functionslikehomeautomationcontrolandsecuritymonitoringcanberealizedwithimprovedresponsivenessandreducednetworkload.
Inaddition,basedontheAIagentcustomizationanddevelopmentplatform,personalizedAIagentservicescanbecustomizedaccordingtothespecificneedsandusagehabitsofusers,providingmoreaccurateandefficientservices.Thisnotonlyincludesapplicationsinprofessionalfieldssuchasofficeagentsandfinancialagentsbutcanalsobeextendedtovariousaspectsoflifesuchaspersonalhealthmanagement,education,andentertainment.BycallingontheLLMsandprofessionalknowledgebasesdistributedintheend-to-endnetworkondemand,integratingpluginsandtools,etc.,personalizedAIagentscanenhancetheirprofessionalcapabilitieswhilenotlosingresponsivenessorcustomerexperience.
Insummary,throughthedevelopmentofCloud-EdgecollaborationandpersonalizedAIagentservices,thebottleneckproblemofnetworkcommunicationcanbeeffectivelysolved,promotingthewidespreadapplicationofLLMsinvariousfieldsandachievingatrueintelligenttransformation.
2.2DataFuelingPerspective
Challenge:Thelackofstandardizationofscattereddatahindersthestartingpointfor
data-drivenAX.
Foresight:DataGovernancefordataclassification,datastandardizationandsystematization,andgrademanagementofdata.
DatagovernanceisaseriesofprocessesrelatedtodatastandardizationforAI,toensureconsistencyindatanames,datadescriptions,anddataformats.
Thefollowingthreestagesarenecessarytoimplementdatagovernancesuccessfully.Meaningfulclassificationofcompany-widedataItiscrucialtosystematically
10
classifyvarioustypesofcompany-widedata,suchasenterprisedata,customerdata,managementdata,andinfrastructuredata,accordingtotheirtypesandpurposes.Systematicclassificationofdataisthestartingpointforefficientmanagement,utilization,andexecutionofAXinthenearfuture.
StandardizationandsystematizationofclassifieddataItisnecessarytomanageandunifystandardssothatcustomerscanunderstandfromthesameperspectiveatanycontactpointwiththepossibilityofconnectionsbetweencompany-widedata.Additionally,toimprovethereadabilityofbusinessdatabyapplyingdatastandardizationandsecureAIutilizationisneeded.
Managingdatagradesandconstructinggrade-basedcloudsconnectedwiththeappropriatesecuritysystemsItisessentialtoestablishagradingsystembycreatingmanagementindicators(quality,utilization,andcost)fordataandaccordinglyconfiguringgrade-basedclouds.Fromthesecurityenhancementperspective,itshouldbeavailabletochooseaccesscontrol,monitoring,andlogmanagementaccordingtothedatagrade.
Challenge:Dataintegrationisrequiredtomanagedatathatmakesunfragmentedinoneplace.
Foresight:Cloud-basedintegratedplatformfordatacentralization,analysis,andmodeling.
Itisrequiredtobuildacloud-basedMLdataplatformthatcancentralizecompany-widedatatoresolveexistingdataissues.
Buildinganintegrateddataplatformhelpscentralizethedataandgraduallyresolvetheissuescausedbydatasilos.
Tocontinuouslymanagethedataintegrationeffectively,itisnecessarytoconsistentlyalignamodernizationofAI,Data,andITinfrastructuresothattheprocessofdataaccumulationbythealignmentbetweenAIandDataandavailabilityofassetsbythealignmentbetweenDataandITcontinuestocirculate.
Throughthedirectionofdatacollectionandavailabilityofassets,itisexpectedtoachievetheeffectssuchasimprovingdecision-making,andpredictingissuesbyutilizingcustomerdata,managementdata,andinfrastructuredata.
Challenge:DataServingshouldbepreparedtointegrateanddistributethedataappropriately.
Foresight:Company-widecollaboration,secureandaccumulationofcapabilities,datamonetization.
Eveniftheprocessofintegrateddatagovernanceandmanagementiscarriedoutproperly,itcannotbesaidthatdata-drivenAXhasbeenfullyrealized.
Toeffectivelyintegratetheaccumulateddataanddistributeitasneeded,adedicatedorganizationthatleadsdataplanningandexecutionmustbeestablishedaswellasacollaborativesystembasedondomain-specificMLOps.
Anexpertiseindatagovernanceanddomain-specificdatacanbesecuredthroughsuchacollaborativesystem.
Additionally,itisnecessarytoexpanddatautilizationbusinessesbasedontheacquired
11
dataoperationandmanagementcapabilitiesandtoconvertthisexperienceintoexternalbusinesscapabilities.
3ApplicationToolingPlatforms
Inresponsetonumerouschallengesthatgreatlylimittheefficiencyofusersinbuildingintelligentagentsduringthedevelopmentprocess,suchashightechnicalbarriers,longdevelopmentcycles,difficultiesinimprovingmodelperformance,complexdeploymentandmaintenance,insufficientcustomizationandflexibility,difficultiesinteamcollaboration,andensuringsecuritycompliance,bothChinaMobile'sJiutianLargeLanguageModelApplicationPlatformandDOCOMO'sLLMValue-AddedPlatformenableone-stopintelligentagentapplicationdevelopment.
3.1ChinaMobileJiutianLargeLanguageModelApplicationPlatform
ChinaMobile'sJiutianLargeLanguageModelApplicationPlatformhascapabilitiessuchasapplicationconstruction,pluginintegration,modelplayground,andinferenceservices,offeringafull-process,one-stopproductiontoolforLLMapplications.Itprovidesacombinationofautonomousplanningandschedulingwithcontrollablemanualschedulingtoimproveschedulingaccuracyandreducemodelhallucinations,achievesenhancedmanagementofprivatedomainknowledgebasestoimprovetheaccuracyandprofessionalismofanswers,integratesarichsetofofficialpluginstofacilitatetheconstructionofabroaderrangeofapplicationcapabilities,integratesvariousmemorycapabilitiestopersonalizemodelresponsesandintegrateswiththird-partyapplicationstoprovideaccesstoAPIsandotherinferenceservices,whichhelpsindividualandenterprisecustomerstodeveloptheirownAIapplicationsatalowcostandinatimelyfashion,promotingtheapplicationandimplementationofLLMsinvariousindustries.
Figure1IllustrativeWorkflowofJiutianLargeLanguageModelApplicationPlatform
12
AsshowninFigure1,theJiutianLargeLanguageModelApplicationPlatformprovidesone-stopintelligentagentservicesforindividualandenterprisecustomers,insupportingmorethan100,000userstoquicklybuildmorethan1,500customizedintelligentagentapplications,coveringmultiplescenariossuchasoffice,social,entertainment,anddailylife,helpingAItoempowervariousindustries.
Lookingtothefuture,consumers'needsarebecomingincreasinglycomplex,andhigherrequirementswillbeproposedforthequality,stability,andrefinementofservices.Toempoweruserstobuilddiverseandcomplexapplications,theplatformwillfocusonstandardizingprocesses,supportingmultimodaldata,low-codeworkflows,andoptimizingthecorecapabilitiesofintelligentagents.Bycomprehensivelyupgradingintelligentagentservices,itensuresexcellentquality,stability,andreliability,enrichesthepluginecosystem,andprovidesanefficient,intelligent,andcomprehensiveconstructionexperience,inordertohelpitscustomersseizetheinitiativeindigitaltransformation,acceleratethepaceofinnovation,andachievealeapinbusinessvalue.
3.2DOCOMOLLMValue-AddedPlatform
SinceAugust2023,DOCOMOhavebeendevelopingtheLLMValue-AddedPlatformtopromotedigitaltransformationwithinourinternaloperationsandprovidenewservicesusingLLMs.ThisplatformisutilizedwithintheDOCOMOGroup,boastingapproximately7,000monthlyactiveusersandaround1,000,000callspermonth.
Themajorfeaturesavailableontheplatforminclude:
lLLMTherearevariousLLMsavailableasopen-sourcesoftware(OSS)orsoftwareasaservice(SaaS).TheseLLMsdifferintermsofcost,inp
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030文化创意产品生命周期管理分析及产品创新与品牌国际化研究
- 2025-2030整合文化资源开发策略及地方旅游品牌塑造研究
- 2025-2030挪威能源勘探行业市场现状供需分析及投资评估规划分析研究报告
- 2025-2030挪威海洋航运业市场供需分析及投资评估规划分析研究报告
- 2025-2030挪威海洋油气技术产业竞争格局市场分析技术创新优化动态评估规划报告
- 2025-2030挪威海洋工程行业市场需求分析及项目投资风险评估文档
- 2025-2030挪威海洋工程市场研究供需结构分析及投资开发规划风险评估问卷
- 2025-2030挪威数据中心业务发展现状分析及智能运维创新方向
- 2025-2030投资全球水务设施市场供需分析技术评估规划发展趋势报告
- 2025-2030执业医师行业市场现状供需分析及投资评估规划分析研究报告
- 新疆维吾尔自治区普通高中2026届高二上数学期末监测试题含解析
- 2026年辽宁金融职业学院单招职业技能测试题库附答案解析
- 2026北京海淀初三上学期期末语文试卷和答案
- 2024-2025学年北京市东城区五年级(上)期末语文试题(含答案)
- 人工智能在医疗领域的应用
- 2025年广东省茂名农垦集团公司招聘笔试题库附带答案详解
- 【10篇】新部编五年级上册语文课内外阅读理解专项练习题及答案
- 2026年宁夏贺兰工业园区管委会工作人员社会化公开招聘备考题库带答案详解
- NB-T32036-2017光伏发电工程达标投产验收规程
- 提高铝模板施工质量合格率
- 传感器与检测技术习题集
评论
0/150
提交评论