版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Lesson9SurveyofResearchandPracticesofNetwork-on-Chip
(第九课片上网络的研究与实践综述)
Vocabulary(词汇)ImportantSentences(重点句)QuestionsandAnswers(问答)Problems(问题)
ThescalingofmicrochiptechnologieshasenabledlargescaleSystems-on-Chip(SoC).Network-on-Chip(NoC)researchaddressesglobalcommunicationinSoC,involving(i)amovefromcomputation-centrictocommunication-centricdesignand(ii)theimplementationofscalablecommunicationstructures.Thissurvey,wedefinethefollowingabstractions:system,networkadapter,network,andlinktoexplainandstructurethefundamentalconcepts.First,researchrelatingtotheactualnetworkdesignisreviewed.Thensystemleveldesignandmodelingarediscussed.Wealsoevaluateperformanceanalysistechniques.TheresearchshowsthatNoCconstitutesaunificationofcurrenttrendsofintrachipcommunicationratherthananexplicitnewalternative.1Introduction
Chipdesignhasfourdistinctaspects:computation,memory,communication,andI/O.Asprocessingpowerhasincreasedanddataintensiveapplicationshaveemerged,thechallengeofthecommunicationaspectinsingle-chipsystems,Systems-on-Chip(SoC),hasattractedincreasingattention.ThissurveytreatsaprominentconceptforcommunicationinSoCknownasNetwork-on-Chip(NoC).
Aswillbecomeclearinthefollowing,NoCdoesnotconstituteanexplicitnewalternativeforintrachipcommunicationbutisratheraconceptwhichpresentsaunificationofon-chipcommunicationsolutions.Inthissection,wewillfirstbrieflyreviewthehistoryofmicrochiptechnologythathasledtoacallforNoC-baseddesigns.Withourmindsonintrachipcommunication,wewillthenlookatanumberofkeyissuesoflarge-scalechipdesignandfinallyshowhowtheNoCconceptprovidesaviablesolutionspacetotheproblemspresentlyfacedbychipdesigners.
1.1IntraSoCCommunication
Thescalingofmicrochiptechnologieshasleadtoadoublingofavailableprocessingresourcesonasinglechipeverysecondyear.Eventhoughthisisprojectedtoslowdowntoadoublingeverythreeyearsinthenextfewyearsforfixedchipsizes,theexponentialtrendisstillinforce.Thoughtheevolutioniscontinuous,thesystemlevelfocus,orsystemscope,movesinsteps.Whenatechnologymaturesforagivenimplementationstyle,itleadstoaparadigmshift.Examplesofsuchshiftsaremovingfromroom-torack-levelsystems(LSI-1970s)andlaterfromrack-toboard-levelsystems(VLSI-1980s).Recenttechnologicaladvancesallowingmultimilliontransistorchips(currentlywellbeyond100M)haveledtoasimilarparadigmshiftfromboardtochip-levelsystems(ULSI-1990s).ThescopeofasinglechiphaschangedaccordinglyasillustratedinFig.1.InLSIsystems,achipwasacomponentofasystemmodule(e.g.,abitsliceinabitsliceprocessor),inVLSIsystems,achipwasasystem-levelmodule(e.g.,aprocessororamemory),andinULSIsystems,achipconstitutesanentiresystem(hencethetermSystem-on-Chip).SoCopensupthefeasibilityofawiderangeofapplicationsmakinguseofmassiveparallelprocessingandtightlyinterdependentprocesses,someadheringtoreal-timerequirements,bringingintofocusnewcomplexaspectsoftheunderlyingcommunicationstructure.ManyoftheseaspectsareaddressedbyNoC.Fig.1Whenatechnologymatures,itleadstoaparadigmshiftinsystemscope.ShownhereisthechipscopeinLSI,VLSI,andULSI,thesequenceoftechnologiesleadingtotheenablingofSoCdesigns.
TherearemultiplewaystoapproachanunderstandingofNoC.Readerswellversedinmacronetworktheorymayapproachtheconceptbyadaptingproventechniquesfrommulticomputernetworks.Muchworkdoneinthisareaduringthe80sand90scanreadilybebuiltupon.Layeredcommunicationabstractionmodelsanddecouplingofcomputationandcommunicationarerelevantissues.Thereare,however,anumberofbasicdifferencesbetweenon-andoff-chipcommunication.Thesegenerallyreflectthedifferenceinthecostratiobetweenwiringandprocessingresources.
Historically,computationhasbeenexpensiveandcommunicationcheap.Withscalingmicrochiptechnologies,thischanged.Computationisbecomingevercheaper,whilecommunicationencountersfundamentalphysicallimitationssuchastime-of-flightofelectricalsignals,poweruseindrivinglongwires/cables,etc.Incomparisonwithoffchip,on-chipcommunicationissignificantlycheaper.Thereisroomforlotsofwiresonachip.Thustheshifttosingle-chipsystemshaverelaxedsystemcommunicationproblems.Howeveron-chipwiresdonotscaleinthesamemannerastransistorsdo,and,asweshallseeinthefollowing,thecostgapbetweencomputationandcommunicationiswidening.Meanwhilethedifferencesbetweenon-andoff-chipwiresmakethedirectscalingdownoftraditionalmulticomputernetworkssuboptimalforon-chipuse.
Inthissurvey,weattempttoincorporatethewholerangeofdesignabstractionswhilerelatingtothecurrenttrendsofintrachipcommunication.WiththeGigaTransistorChiperacloseathand,thesolutionspaceofintrachipcommunicationisfarfromtrivial.Wehavesummarizedanumberofrelevantkeyissues.Thoughnotnew,wefinditworthwhiletogothroughthemastheNoCconceptpresentsapossibleunificationofsolutionsforthese.InSection3and4,wewilllookintothedetailsofresearchbeingdoneinrelationtotheseissues,andtheirrelevanceforNoC.
Electricalwires.Eventhoughon-chipwiresarecheapincomparisonwithoff-chipwires,on-chipcommunicationisbecomingstillmorecostlyintermsofbothpowerandspeed.Asfabricationtechnologiesscaledown,wireresistanceper-mmisincreasingwhilewirecapacitancedoesnotchangemuch;themajorpartofthewirecapacitanceisduetoedgecapacitance.ForCMOS,theapproximatepointatwhichwiredelaysbegintodominategatedelayswasthe0.25μmgenerationforaluminum,and0.18μmforcopperinterconnectsasfirstprojectedinSIA.Shrinkingmetalpitches,inordertomaintainsufficientroutingdensities,isappropriateatthelocallevelwherewirelengthsalsodecreasewithscaling.Butglobalwirelengthsdonotdecrease,and,aslocalprocessingcycletimesdecrease,thetimespentonglobalcommunicationrelativetothetimespentonlocalprocessingincreasesdrastically.ThusinfutureDeepSubMicron(DSM)designs,theinterconnecteffectwilldefinitelydominateperformance.Fig.2,takenfromtheInternationalTechnologyRoadmapforSemiconductors,showstheprojectedrelativedelayforlocalwires,globalwires,andlogicgatesinthenearfuture.Anotherissueofpressingimportanceconcernssignalintegrity.InDSMtechnologies,thewiremodelsareunreliableduetoissueslikefabricationuncertainties,crosstalk,noisesensitivityetc.Theseissuesareespeciallyapplicabletolongwires.Duetotheseeffectsofscaling,ithasbecomenecessarytodifferentiatebetweenlocalandglobalcommunication,and,astransistorsshrink,thegapisincreasing.Theneedforglobalcommunicationschemessupportingsingle-chipsystemshasemerged.Fig.2Projectedrelativedelayforlocalandglobalwiresandforlogicgatesintechnologiesofthenearfuture.[ITRS2001].
Systemsynchronization.
Aschiptechnologiesscaleandchipspeedsincrease,itisbecominghardertoachieveglobalsynchronization.Thedrawbacksofthepredominantdesignstyleofdigitalintegratedcircuits,thatis,strictglobalsynchrony,aregrowingrelativetotheadvantages.[1]Theclocktreeneededtoimplementagloballysynchronizedclockisdemandingincreasingportionsofthepowerandareabudget,and,evenso,theclockskewisclaiminganeverlargerrelativepartofthetotalcycletimeavailable.Thishastriggeredworkonskew-tolerantcircuitdesign,whichdealswithclockskewbyrelaxingtheneedfortimingmargins,andontheuseofopticalwaveguidesforonchipclockdistribution,forthemainpurposeofminimizingpowerusage.Still,powerhungryskewadjustmenttechniquessuchasPhaseLockedLoops(PLL)andDelaylockedloops(DLL),traditionallyusedforchip-to-chipsynchronization,arefindingtheirwayintosingle-chipsystems.Asareactiontotheinherentlimitationsofglobalsynchrony,alternativeconceptssuchasGALS(GloballyAsynchronousLocallySynchronoussystems)arebeingintroduced.AGALSchipismadeupoflocallysynchronousislandswhichcommunicateasynchronously.Therearetwomainadvantageousaspectsofthismethod.Oneisthereducingofthesynchronizationproblemtoanumberofsmallersubproblems.TheotherrelatestotheintegrationofdifferentIP(IntellectualProperty)cores,easingthebuildingoflargersystemsfromindividualblockswithdifferenttimingcharacteristics.
Designproductivity.Theexplodingamountofprocessingresourcesavailableinchipdesigntogetherwitharequirementforshorteneddesigncycleshavepushedtheproductivityburdenontochipdesigners.Between1997and2002,themarketdemandreducedthetypicaldesigncycleby50%.Asaresultofincreasedchipsizes,shrinkinggeometries,andtheavailabilityofmoremetallayers,thedesigncomplexityincreased50timesinthesameperiod.Tokeepupwiththeserequirements,IPreuseispertinent.Anewparadigmfordesignmethodologyisneededwhichallowsthedesignefforttoscalelinearlywithsystemcomplexity.
AbstractionattheRegisterTransferLevel(RTL)wasintroducedwiththeASICdesignflowduringthe1990s,allowingsynthesizedstandardcelldesign.Thismadeitpossibletodesignlargechipswithinshortdesigncycles,andsynthesizedRTLdesignis,atpresent,thedefactostandardformakinglargechipsquickly.Buttheavailabilityofon-chipresourcesisoutgrowingtheproductivitypotentialofeventheASICdesignstyle.Inordertoutilizetheexponentialgrowthinnumberoftransistorsoneachchip,evenhigherlevelsofabstractionmustbeapplied.Thiscanbedonebyintroducinghigherlevelcommunicationabstractions,makingalayereddesignmethodologythatenablesapartitioningofthedesigneffortintominimallyinterdependentsubtasks.SupportforthisatthehardwarelevelincludesstandardcommunicationsocketswhichallowIPcoresfromdifferentvendorstobepluggedeffortlesslytogether.ThisisparticularlypertinentincomplexMultiProcessorSystem-on-Chip(MPSoC)designs.Also,thedevelopmentofdesigntechniquestofurtherincreasetheproductivityofdesigners,isimportant.ElectronicSystemLevel(ESL)designtoolsarenecessaryforsupportingadesignflowwhichmakeefficientuseofsuchcommunicationabstractionanddesignautomationtechniquesandwhichmakeforseamlessiterationsacrossallabstractionlevels.Pertainingtothis,thecomplex,dynamicinterdependencyofdatastreams—arisingwhenusingasharedmediafordatatraffic—threatenstofoiltheeffortsofobtainingminimalinterdependencebetweenIPcores.WithoutspecialQuality-Of-Service(QoS)support,theperformanceofdatacommunicationmaybecomeunwarrantlyarbitrary.
Toensuretheeffectiveexploitationoftechnologyscaling,intelligentuseoftheavailablechipdesignresourcesisnecessaryatthephysicalaswellasatthelogicaldesignlevel.ThemeanstoachievethisarethroughthedevelopmentofeffectiveandstructureddesignmethodsandESLtools.
Asshown,themajordrivingfactorsforthedevelopmentofglobalcommunicationschemesaretheeverincreasingdensityofon-chipresourcesandthedrivetoutilizetheseresourceswithaminimumofeffortaswellastheneedtocounteractthephysicaleffectsofDSMtechnologies.Thetrendistowardsasubdivisionofprocessingresourcesintomanageablepieces.Thishelpsreducedesigncycletimesincetheentirechipdesignprocesscanbedividedintominimallyinterdependentsubproblems.Thisalsoallowstheuseofmodularverificationmethodologies,thatis,verificationatalowabstractionlevelofcores(andcommunicationnetwork)individuallyandatahighabstractionlevelofthesystemasawhole.Workingatahighabstractionlevelallowsagreatdegreeoffreedomfromlowerlevelissues.Italsotendstowardsadifferentiationoflocalandglobalcommunication.Asintercorecommunicationisbecomingtheperformancebottleneckinmanymulticoreapplications,theshiftindesignfocusisfromatraditionalprocessing-centrictoacommunication-centricone.Onetop-levelaspectofthisinvolvesthepossibilitytosaveonglobalcommunicationresourcesattheapplicationlevelbyintroducingcommunicationawareoptimizationalgorithmsincompilers.System-leveleffectsoftechnologyscalingarefurtherdiscussedinCatthooretal[2004].
Astandardizedglobalcommunicationscheme,togetherwithstandardcommunicationsocketsforIPcores,wouldmakeLegobrick-likeplug-and-playdesignstylespossible,allowinggooduseoftheavailableresourcesandfastproductdesigncycles.[2]
1.2NoCinSoC
Fig.3showssomeexamplesofbasiccommunicationstructuresinasampleSoC,forexample,amobilephone.SincetheintroductionoftheSoCconceptinthe90s,thesolutionsforSoCcommunicationstructureshavegenerallybeencharacterizedbycustomdesignedadhocmixesofbusesandpoint-to-pointlinksbusbuildsonwellunderstoodconceptsandiseasytomodel.Inahighlyinterconnectedmulticoresystem,however,itcanquicklybecomeacommunicationbottleneck.Asmoreunitsareaddedtoit,thepowerusagepercommunicationeventgrowsaswellduetomoreattachedunitsleadingtohighercapacitiveload.Formultimasterbusses,theproblemofarbitrationisalsonottrivial.Table1summarizestheprosandconsofbusesandnetworks.Acrossbarovercomessomeofthelimitationsofthebuses.However,itisnotultimatelyscalableand,assuch,itisanintermediatesolution.Dedicatedpoint-to-pointlinksareoptimalintermsofbandwidthavailability,latency,andpowerusageastheyaredesignedespeciallyforthisgivenpurpose.Also,theyaresimpletodesignandverifyandeasytomodel.Butthenumberoflinksneededincreasesexponentiallyasthenumberofcoresincreases.Thusanareaandpossiblyaroutingproblemdevelops.Fig.3ExamplesofcommunicationstructuresinSystems-on-Chip.(a)traditionalbus-basedcommunication;(b)dedicatedpoint-to-pointlinks;(c)achipareanetworkTable1Bus-versus-NetworkArguments(AdaptedfromGuerrierandGreiner[2000])
Fromthepointofviewofdesign-effort,onemayarguethat,insmallsystemsoflessthan20cores,anadhoccommunicationstructureisviable.But,asthesystemsgrowandthedesigncycletimerequirementsdecrease,theneedformoregeneralizedsolutionsbecomespressing.Formaximumflexibilityandscalability,itisgenerallyacceptedthatamovetowardsashared,segmentedglobalcommunicationstructureisneeded.Thisnotiontranslatesintoadata-routingnetworkconsistingofcommunicationlinksandroutingnodesthatareimplementedonthechip.IncontrasttotraditionalSoCcommunicationmethodsoutlinedpreviously,suchadistributedcommunicationmediascaleswellwithchipsizeandcomplexity.Additionaladvantagesincludeincreasedaggregatedperformancebyexploitingparalleloperation.
Fromatechnologicalperspective,asimilarsolutionisreached:inDSMchips,longwiresmustbesegmentedinordertoavoidsignaldegradation,andbussesareimplementedasmultiplexedstructuresinordertoreducepowerandincreaseresponsiveness.Hierarchicalbusstructuresarealsocommonasameanstoadheretothegivencommunicationrequirements.Thenextnaturalstepistoincreasethroughputbypipeliningthesestructures.Wiresbecomepipelinesandbus-bridgesbecomeroutingnodes.Expandingonastructureusingtheseelements,onegetsasimplenetwork.
AcommonconceptforsegmentedSoCcommunicationstructuresisbasedonnetworks.ThisiswhatisknownasNetwork-on-Chip(NoC).Aspresentedpreviously,thedistinctionbetweendifferentcommunicationsolutionsisfading.NoCisseentobeaunifyingconceptratherthananexplicitnewalternative.Intheresearchcommunity,therearetwowidelyheldperceptionsofNoC:(i)thatNoCisasubsetofSoC,and(ii)thatNoCisanextensionofSoC.Inthefirstview,NoCisdefinedstrictlyasthedata-forwardingcommunicationfabric,thatis,thenetworkandmethodsusedinaccessingthenetwork.Inthesecondview,NoCisdefinedmorebroadlytoalsoencompassissuesdealingwiththeapplication,systemarchitecture,anditsimpactoncommunicationorviceversa.
1.3Outline
ThepurposeofthissurveyistoclarifytheNoCconceptandtomapthescientificeffortsmadeintotheareaofNoCresearch.Wewillidentifygeneraltrendsandexplainarangeofissueswhichareimportantforstate-of-the-artglobalchip-levelcommunication.Indoingso,weprimarilytakethefirstviewofNoC,thatis,thatitisasubsetofSoC,tofocusandstructurethediversediscussion.Fromourperspective,theviewofNoCasanextensionofSoCmuddlesthediscussionwithtopicscommontoanylarge-scaleICdesigneffortsuchaspartitioningandmappingapplication,hardware/
softwarecodesign,compilerchoice,etc.
Therestofthesurveyisorganizedasfollows.InSection2,wewilldiscussthebasicsofNoC.WewillgiveasimpleNoCexample,addresssomerelevantsystem-levelarchitecturalissues,andrelatethebasicbuildingblocksofNoCtoabstractnetworklayersandresearchareas.InSection3,wewillgointomoredetailsofexistingNoCresearch.ThissectionispartitionedaccordingtotheresearchareasdefinedinSection2.InSection4,wediscusshighabstraction-levelissuessuchasdesignspaceexplorationandmodeling.TheseareissuesoftenapplicabletoNoConlyintheviewofitasanextensionofSoC,butwetreatspecificallyissuesofrelevancetoNoC-baseddesignsandnottolargescaleICdesignsingeneral.InSection5,performanceanalysisisaddressed.Section6presentsasetofcasestudiesdescribinganumberofspecificNoCimplementations,andSection7summarizesthesurvey.2NoCBasics
Inthissection,thebasicsofNoCareuncovered.Firstacomponent-basedviewwillbepresented,introducingthebasicbuildingblocksofatypicalNoC.Thenwewilllookatsystem-levelarchitecturalissuesrelevanttoNoC-basedSoCdesigns.Afterthis,alayeredabstraction-basedviewwillbepresented,lookingatnetworkabstractionmodels,inparticular,OSIandtheadaptionofsuchforNoC.Usingthefoundationsestablishedinthissection,wewillgointofurtherdetailsofspecificNoCresearchinSection3.
2.1ASimpleNoCExample
Fig.4showsasampleNoCstructuredasa4-by-4gridwhichprovidesglobalchiplevelcommunication.Insteadofbussesanddedicatedpoint-to-pointlinks,amoregeneralschemeisadapted,employingagridofroutingnodesspreadoutacrossthechip,connectedbycommunicationlinks.Fornow,wewilladaptasimplifiedperspectiveinwhichtheNoCcontainsthefollowingfundamentalcomponents.
—Networkadaptersimplementtheinterfacebywhichcores(IPblocks)connecttotheNoC.Theirfunctionistodecouplecomputation(thecores)fromcommunication(thenetwork).
—Routingnodesroutethedataaccordingtochosenprotocols.Theyimplementtheroutingstrategy.
—Linksconnectthenodes,providingtherawbandwidth.Theymayconsistofoneormorelogicalorphysicalchannels.
Fig.4coversonlythetopologicalaspectsoftheNoC.TheNoCinthefigurecouldthusemploypacketorcircuitswitchingorsomethingentirelydifferentandbeimplementedusingasynchronous,synchronous,orotherlogic.InSection3,wewillgointodetailsofspecificissueswithanimpactonthenetworkperformance.Fig.4Topologicalillustration
ofa4-by-4gridstructuredNoC,indicatingthefundamentalcomponents.
2.2ArchitecturalIssues
Thediversityofcommunicationinthenetworkisaffectedbyarchitecturalissuessuchassystemcompositionandclustering.ThesearegeneralpropertiesofSoCbut,sincetheyhavedirectinfluenceonthedesignofthesystem-levelcommunicationinfrastructure,wefinditworthwhiletogothroughthemhere.
Fig.5illustrateshowsystemcompositioncanbecategorizedalongtheaxesofhomogenity
andgranularity
ofsystemcores.ThefigurealsoclarifiesabasicdifferencebetweenNoCandnetworksformoretraditionalparallelcomputers;thelatterhavegenerallybeenhomogeneousandcoarsegrained,whereasNoC-basedsystemsimplementamuchhigherdegreeofvarietyincompositionandintrafficdiversity.Fig.5Systemcompositioncategorizedalongtheaxesofhomogenityandgranularityofsystemcomponents.
Clustering
dealswiththelocalizationofportionsofthesystem.Suchlocalizationmaybelogicalorphysical.Logicalclusteringcanbeavaluableprogrammingtool.Itcanbesupportedbytheimplementationofhardwareprimitivesinthenetwork,forexample,flexibleaddressingschemesorvirtualconnections.Physicalclustering,basedonpreexistingknowledgeoftrafficpatternsinthesystem,canbeusedtominimizeglobalcommunication,therebyminimizingthetotalcostofcommunicating,powerandperformancewise.
Generallyspeaking,reconfigurability
dealswiththeabilitytoallocateavailableresourcesforspecificpurposes.InrelationtoNoC-basedsystems,reconfigurabilityconcernshowtheNoC,aflexiblecommunicationstructure,canbeusedtomakethesystemreconfigurablefromanapplicationpointofview.Aconfigurationcanbeestablishedforexample,byprogrammingconnectionsintotheNoC.ThisresemblesthereconfigurabilityofanFPGA,thoughNoC-basedreconfigurabilityismostoftenofcoarsergranularity.InNoC,thereconfigurableresourcesaretheroutingnodesandlinksratherthanwires.
Muchresearchworkhasbeendoneonarchitecturally-orientedprojectsinrelationtoNoC-basedsystems.Themainissueinarchitecturaldecisionsisthebalancingofflexibility,performance,andhardwarecostsofthesystemasawhole.Astheunderlyingtechnologyadvances,thetrade-offspectrumiscontinuallyshifted,andtheviabilityoftheNoCconcepthasopeneduptoacommunication-centricsolutionspacewhichiswhatcurrentsystem-levelresearchexplores.
AtonecornerofthearchitecturalspaceoutlinedinFig.5,isthePleiadesarchitecture[Zhangetal.2000]anditsinstantiation,theMaiaprocessor.Amicroprocessoriscombinedwitharelativelyfine-grainedheterogeneouscollectionofALUs,memories,FPGAs,etc.Aninterconnectionnetworkallowsarbitrarycommunicationbetweenmodulesofthesystem.Thenetworkishierarchicalandemploysclusteringinordertoprovidetherequiredcommunicationflexibilitywhilemaintaininggoodenergy-efficiency.
Attheoppositecornerareanumberofworks,implementinghomogeneouscoarsegrainedmultiprocessors.InSmartMemories,ahierarchicalnetworkisusedwithphysicalclusteringoffourprocessors.Theflexibilityofthelocalclusternetworkisusedasameansforreconfigurability,andtheeffectivenessoftheplatformisdemonstratedbymimickingtwomachinesonfarendsofthearchitecturalspectrum,theImaginestreamingprocessorandHydramultiprocessor,withmodestperformancedegradation.TheglobalNoCisnotdescribed,however.IntheRAWarchitecture,ontheotherhand,theNoCwhichinterconnectstheprocessortilesisdescribedindetail.Itconsistsofastaticnetwork,inwhichthecommunicationispreprogrammedcycle-by-cycle,andadynamicnetwork.Thereasonforimplementingtwophysicallyseparatenetworksistoaccommodatedifferenttypesoftrafficingeneralpurposesystems.TheEclipseisanothersimilarlydistributedmultiprocessorarchitecture.
2.3NetworkAbstraction
ThetermNoCisusedinresearchtodayinaverybroadsenserangingfromgatelevelphysicalimplementation,acrosssystemlayoutaspectsandapplications,todesignmethodologiesandtools.Amajorreasonforthewidespreadadaptationofnetworkterminologyliesinthereadilyavailableandwidelyacceptedabstractionmodelsfornetworkedcommunication.TheOSImodeloflayerednetworkcommunicationcaneasilybeadaptedforNoCusageasdoneinBeniniandMicheli[2001]andArteris[2005].Inthefollowing,wewilllookatnetworkabstraction,andmakesomedefinitionstobeusedlaterinthesurvey.
TobetterunderstandtheapproachesofdifferentgroupsinvolvedinNoC,wehavepartitionedthespectrumofNoCresearchintofourareas:1)system,2)networkadapter,3)networkand4)linkresearch.Fig.6showstheflowofdatathroughthenetwork,indicatingtherelationbetweentheseresearchareas,thefundamentalcomponentsofNoC,andtheOSIlayers.Alsoindicatedisthebasicdatagramterminology.Fig.6TheflowofdatafromsourcetosinkthroughtheNoCcomponentswithanindicationofthetypesofdatagramsandresearcharea.
Thesystemencompassesapplications(processes)andarchitecture(coresandnetwork).Atthislevel,mostofthenetworkimplementationdetailsmaystillbehidden.MuchresearchdoneatthislevelisapplicabletolargescaleSoCdesigningeneral.TheNetworkAdapter(NA)decouplesthecoresfromthenetwork.Ithandlestheendto-endflowcontrol,encapsulatingthemessagesortransactionsgeneratedbythecoresfortheroutingstrategyoftheNetwork.Thesearebrokenintopacketswhichcontaininformationabouttheirdestination,orconnection-orientedstreamshichdonot,buthavehadapathsetuppriortotransmission.TheNAisthefirstlevelwhichisnetworkaware.Thenetworkconsistsoftheroutingnodes,links,etc,definingthetopologyandimplementingtheprotocolandthenode-to-nodeflowcontrol.Thelowestlevelisthelinklevel.Atthislevel,thebasicdatagramareflits(flowcontrolunits),nodelevelatomicunitsfromwhichpacketsandstreamsaremadeup.Someresearchersoperatewithyetanothersubdivision,namelyphits(physicalunits),whicharetheminimumsizedatagramthatcanbetransmittedinonelinktransaction.Mostcommonlyflitsandphitsareequivalent,thoughinanetworkemployinghighlyserializedlinks,eachflitcouldbemadeupofasequenceofphits.Link-levelresearchdealsmostlywithencodingandsynchronizationissues.Thepresenteddatagramterminology(Fig.7)seemstoegene
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年茂名市电白区电城中学招聘合同制教师备考题库及一套完整答案详解
- 半年个人工作总结10篇
- 2025年浦发银行昆明分行公开招聘备考题库及一套参考答案详解
- 2026年兴业银行广州分行校园招聘备考题库及1套完整答案详解
- 十八项核心制度
- 2025国考银行结构化面试试题及答案解析
- 2025年关于为淄博市检察机关公开招聘聘用制书记员的备考题库含答案详解
- 2025年中国科学院力学研究所SKZ专项办公室人员招聘备考题库及一套答案详解
- 2025年重庆大学工业母机创新研究院劳务派遣工程师招聘备考题库(长期有效)完整答案详解
- 黑龙江公安警官职业学院《战略管理》2025 学年第二学期期末试卷
- 中华联合财产保险股份有限公司2026年校园招聘备考题库及一套完整答案详解
- 诗经中的爱情课件
- 2025年烟花爆竹经营单位安全管理人员考试试题及答案
- 2025天津大学管理岗位集中招聘15人参考笔试试题及答案解析
- 2025年云南省人民检察院聘用制书记员招聘(22人)考试笔试参考题库及答案解析
- TCAMET02002-2019城市轨道交通预埋槽道及套筒技术规范
- 24- 解析:吉林省长春市2024届高三一模历史试题(解析版)
- 临床护士工作现状分析
- 电力线路架设安全操作方案
- 桥台钢筋专项施工方案
- (正式版)DB65∕T 4229-2019 《肉牛、肉羊全混合日粮(∕TMR)搅拌机》
评论
0/150
提交评论