浙大城市学院《机器视觉基础与实践》2021-2022学年第一学期期末试卷_第1页
浙大城市学院《机器视觉基础与实践》2021-2022学年第一学期期末试卷_第2页
浙大城市学院《机器视觉基础与实践》2021-2022学年第一学期期末试卷_第3页
浙大城市学院《机器视觉基础与实践》2021-2022学年第一学期期末试卷_第4页
浙大城市学院《机器视觉基础与实践》2021-2022学年第一学期期末试卷_第5页
已阅读5页,还剩3页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

学校________________班级____________姓名____________考场____________准考证号学校________________班级____________姓名____________考场____________准考证号…………密…………封…………线…………内…………不…………要…………答…………题…………第2页,共2页浙大城市学院《机器视觉基础与实践》

2021-2022学年第一学期期末试卷题号一二三四总分得分一、单选题(本大题共30个小题,每小题1分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、图像分类是计算机视觉中的常见任务之一。对于图像分类模型的训练,以下说法错误的是()A.需要大量有标注的图像数据来学习不同类别的特征B.卷积神经网络(CNN)在图像分类任务中表现出色C.模型的训练过程是不断调整参数以最小化预测误差的过程D.图像分类模型一旦训练完成,就无法再对新的类别进行学习和分类2、在计算机视觉的视频分析中,需要处理连续的图像帧。假设要分析一段监控视频中的人员行为,以下关于视频分析方法的描述,哪一项是不正确的?()A.光流法可以用于计算相邻帧之间的像素运动,从而跟踪物体的运动轨迹B.可以通过对视频帧进行分类和检测,来识别和分析人员的行为模式C.视频分析需要考虑时间维度上的信息,不仅仅是单个图像帧的特征D.视频分析只适用于简单的场景和行为,对于复杂的多人交互场景无法进行有效的分析3、计算机视觉中的视觉注意力机制用于聚焦图像中的重要区域。以下关于视觉注意力机制的说法,不正确的是()A.视觉注意力机制可以根据图像的特征和任务需求动态地选择关注的区域B.注意力机制能够提高模型的效率和性能,减少对无关信息的处理C.视觉注意力机制在图像分类、目标检测和图像生成等任务中得到了广泛应用D.视觉注意力机制的引入会增加模型的复杂度和计算量,降低模型的训练速度4、计算机视觉中的行人重识别是指在不同摄像头拍摄的图像中识别出同一个行人。假设要在一个大型商场的监控系统中实现行人重识别,以下关于行人重识别方法的描述,正确的是:()A.基于颜色和纹理特征的方法对行人的姿态和光照变化不敏感,识别准确率高B.深度学习中的度量学习方法能够学习到行人的判别性特征,但容易受到背景干扰C.行人重识别系统只需要关注行人的外观特征,不需要考虑行人的行为特征D.行人重识别在不同场景和摄像头视角下的性能始终保持稳定,不受影响5、在计算机视觉中,深度估计是确定场景中物体距离相机的距离。以下关于深度估计的说法,错误的是()A.可以通过立体视觉、结构光或飞行时间等技术来获取深度信息B.深度学习方法在单目深度估计中取得了显著进展C.深度估计对于三维重建、虚拟现实和增强现实等应用具有重要意义D.深度估计的结果总是非常精确,不需要进行后处理和优化6、计算机视觉中的光流计算用于估计图像中像素的运动。假设要对一个快速运动的物体进行光流估计,同时场景中存在光照变化和噪声干扰。在这种情况下,以下哪种光流计算方法能够提供更准确和稳定的结果?()A.Lucas-Kanade方法B.Horn-Schunck方法C.Farneback方法D.DeepFlow方法7、在计算机视觉的图像检索任务中,根据用户的需求从图像数据库中查找相关图像。假设要从一个大型的图像库中检索包含特定物体的图像,以下关于图像检索方法的描述,哪一项是不正确的?()A.可以基于图像的内容特征,如颜色、形状和纹理等,进行相似性度量和检索B.深度学习模型能够提取更具语义和判别力的特征,提高图像检索的准确性C.图像检索的结果只取决于图像的特征表示,与检索算法的效率无关D.可以结合用户的反馈和交互,不断优化图像检索的结果8、在计算机视觉的场景理解任务中,假设要理解一个室内场景的布局和功能,例如判断是办公室还是客厅。以下哪种信息对于准确理解场景是至关重要的?()A.物体的类别和位置B.图像的颜色分布C.图像的拍摄角度D.随机选择图像中的部分区域进行分析9、计算机视觉中的姿态估计任务是估计人体或物体在三维空间中的姿态。假设要估计一个人体模特的姿态。以下关于姿态估计的描述,哪一项是不正确的?()A.可以通过关键点检测和关节角度计算来估计人体姿态B.深度学习中的卷积神经网络可以直接预测人体姿态的参数C.姿态估计在虚拟现实和增强现实等应用中具有重要作用D.姿态估计的结果总是非常准确,不受人体遮挡和复杂动作的影响10、图像分割是将图像分成不同的区域,每个区域具有相似的特征。假设要对医学图像进行器官分割,以下关于图像分割方法的描述,哪一项是不正确的?()A.基于阈值的分割方法简单直接,但对于复杂图像效果往往不佳B.基于边缘检测的分割方法通过寻找图像中的边缘来划分区域,但容易受到噪声影响C.基于深度学习的语义分割方法能够实现像素级别的分类,效果较好,但计算量较大D.图像分割只适用于灰度图像,对于彩色图像无法进行有效的分割11、目标检测是计算机视觉中的重要任务之一,旨在定位和识别图像中的多个目标。假设我们要在城市街道的图像中检测行人和车辆。对于处理这种复杂场景的目标检测任务,以下哪种技术通常能提供更准确的检测结果?()A.基于滑动窗口的传统目标检测方法B.基于区域提议的目标检测算法,如R-CNN系列C.基于回归的一阶段目标检测算法,如YOLO系列D.基于聚类的目标检测方法12、在计算机视觉的目标计数任务中,统计图像或视频中目标的数量。假设要统计一个果园中苹果的数量,以下关于目标计数方法的描述,哪一项是不正确的?()A.可以基于图像分割和对象识别的方法,先分割出每个苹果,然后进行计数B.利用深度学习中的回归模型直接预测苹果的数量C.目标计数不受苹果的大小、形状和分布的影响,任何情况下都能准确计数D.结合多视角图像或视频序列可以提高目标计数的准确性13、图像压缩是为了减少图像的数据量,同时保持可接受的视觉质量。假设我们需要在网络上传输大量的图像,以下哪种图像压缩标准能够在保证较高压缩比的同时,提供较好的图像质量?()A.JPEGB.PNGC.GIFD.BMP14、计算机视觉中的场景理解是理解图像或视频中的场景内容和语义信息。假设要理解一张城市街道的图像,以下关于场景理解方法的描述,哪一项是不正确的?()A.可以通过对象检测、语义分割和场景分类等任务来实现场景理解B.结合上下文信息和先验知识能够提高场景理解的准确性C.深度学习模型能够学习场景中的全局特征和关系,实现对场景的深入理解D.场景理解可以在没有任何先验知识和上下文信息的情况下,准确地推断出场景的语义15、计算机视觉在体育赛事分析中的应用可以提供更多的数据和见解。假设要分析一场足球比赛中球员的跑动轨迹和动作。以下关于计算机视觉在体育赛事中的描述,哪一项是不准确的?()A.可以通过对视频的分析,自动跟踪球员的位置和运动轨迹B.能够对球员的动作进行分类,如传球、射门和防守C.计算机视觉在体育赛事分析中的结果可以直接作为裁判的判罚依据,无需人工复查D.可以结合多摄像头的信息,获取更全面和准确的比赛数据16、计算机视觉在自动驾驶领域有广泛的应用。假设一辆自动驾驶汽车需要识别道路上的交通标志,以下关于自动驾驶中的计算机视觉应用的描述,哪一项是不正确的?()A.多摄像头融合可以提供更全面的道路信息,提高交通标志识别的准确性B.深度学习模型可以实时处理摄像头采集的图像,快速准确地识别交通标志C.除了交通标志识别,计算机视觉还可以用于车道检测、行人检测和障碍物检测等任务D.自动驾驶中的计算机视觉系统完全不需要其他传感器(如雷达、激光雷达)的辅助,仅依靠图像信息就能实现安全可靠的驾驶17、在计算机视觉的动作识别任务中,识别视频中的人物动作。假设要识别一段舞蹈视频中的动作,以下关于动作识别方法的描述,哪一项是不正确的?()A.可以提取视频中的时空特征,如光流和运动轨迹,来描述动作B.基于深度学习的方法,如3D卷积神经网络,能够直接处理视频数据,进行动作识别C.动作识别需要考虑动作的速度、幅度和节奏等特征D.动作识别只适用于简单的、规范化的动作,对于复杂的、个性化的动作无法准确识别18、在计算机视觉的目标跟踪任务中,需要持续跟踪一个或多个运动目标。假设要跟踪一个在操场上跑步的人。以下关于目标跟踪算法的描述,哪一项是不正确的?()A.可以基于特征匹配的方法,在连续的帧中找到目标的相似特征来实现跟踪B.深度学习中的相关滤波算法能够快速准确地跟踪目标,适应目标的外观变化C.目标跟踪算法能够在目标被遮挡或短暂消失后,仍然准确地恢复跟踪D.无论目标的运动速度和轨迹如何复杂,目标跟踪算法都能完美地跟踪19、计算机视觉中的人脸识别技术应用广泛。假设要在一个门禁系统中实现准确的人脸识别,以下关于人脸识别方法的描述,正确的是:()A.基于几何特征的人脸识别方法对姿态和光照变化具有很强的鲁棒性B.基于模板匹配的方法能够处理大规模的人脸数据库,并且识别速度快C.深度学习中的卷积神经网络在人脸识别中能够学习到更具判别性的特征,但容易受到数据偏差的影响D.人脸识别系统一旦训练完成,就不需要更新和优化,能够一直保持高准确率20、计算机视觉在农业中的应用可以帮助监测农作物的生长状况。假设要通过图像分析判断农作物的病虫害程度,以下关于农业计算机视觉应用的描述,正确的是:()A.仅依靠农作物的颜色特征就能准确判断病虫害的程度B.不同农作物品种和生长阶段对病虫害判断的影响不大C.结合图像的纹理、形状和颜色等多特征,可以更准确地评估农作物的健康状况D.农业环境的复杂性对计算机视觉的应用没有挑战21、计算机视觉在自动驾驶领域有重要应用。假设车辆需要根据摄像头采集的图像来识别道路上的交通标志,并且要在不同天气和光照条件下都能准确识别。以下哪种方法可能有助于提高交通标志识别的鲁棒性?()A.使用多个不同类型的摄像头获取图像B.仅依赖颜色特征进行识别C.采用简单的线性分类器进行标志分类D.减少训练数据中的交通标志种类22、在计算机视觉的图像检索任务中,需要根据用户提供的示例图像从大规模图像数据库中找到相似的图像。假设要构建一个高效的图像搜索引擎,能够快速准确地返回相关图像。以下哪种图像检索方法在处理大规模数据时性能更优?()A.基于内容的图像检索B.基于文本标注的图像检索C.基于哈希编码的图像检索D.基于深度学习特征的图像检索23、在计算机视觉的行人重识别任务中,需要在不同摄像头拍摄的图像中识别出同一个行人。假设我们要在一个大型商场的监控系统中实现行人重识别,以下哪种特征和模型能够提高识别的准确率和跨摄像头的泛化能力?()A.基于颜色和纹理的特征B.基于深度学习的全局特征和度量学习C.基于形状和轮廓的特征D.基于步态和姿势的特征24、在计算机视觉的三维重建任务中,例如从多视角图像恢复物体的三维形状,需要解决相机位姿估计、特征匹配等问题。以下哪种方法在相机位姿估计方面可能具有更高的精度?()A.基于直接线性变换的方法B.基于BundleAdjustment的方法C.基于特征点的方法D.基于深度学习的方法25、计算机视觉中的图像去噪旨在去除图像中的噪声,同时保留图像的细节和结构。假设我们有一张受到严重噪声污染的医学图像,以下哪种图像去噪方法能够在去除噪声的同时,最大程度地保留图像的边缘和纹理信息?()A.均值滤波B.中值滤波C.高斯滤波D.基于小波变换的去噪方法26、在计算机视觉中,以下哪种方法常用于图像的语义分割中的边界优化?()A.条件随机场B.全连接条件随机场C.深度学习D.以上都是27、在计算机视觉的图像压缩任务中,假设要在保证图像质量的前提下尽可能减小文件大小。以下关于压缩算法的选择,哪一项是不正确的?()A.选择基于变换的压缩算法,如离散余弦变换(DCT)B.采用无损压缩算法,确保图像信息完全不丢失C.只考虑压缩比,不关心图像的视觉质量D.根据图像的特点和应用需求选择合适的压缩算法28、计算机视觉在体育赛事分析中的应用可以提供更深入的比赛洞察。假设要分析一场足球比赛中球员的跑位和传球模式,以下关于体育赛事计算机视觉应用的描述,正确的是:()A.仅依靠球员的位置信息就能全面分析比赛中的战术和策略B.球员的速度和加速度等动态信息对比赛分析的价值不大C.结合深度学习和轨迹分析技术可以更有效地挖掘比赛中的关键模式和趋势D.比赛场地的光照和摄像机视角对计算机视觉分析的结果没有影响29、计算机视觉中的深度估计是计算场景中物体与相机的距离。假设我们要为一个增强现实应用估计场景的深度信息,以下哪种深度估计方法能够在实时性和准确性之间取得较好的平衡?()A.基于立体视觉的方法B.基于结构光的方法C.基于深度学习的单目深度估计方法D.基于飞行时间(ToF)原理的方法30、在计算机视觉的图像风格迁移任务中,将一张图像的风格应用到另一张图像上。假设要将一幅油画的风格迁移到一张照片上,以下关于图像风格迁移方法的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论