




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届辽宁省抚顺市六校高三下学期第六次检测数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.斜率为1的直线l与椭圆相交于A、B两点,则的最大值为A.2 B. C. D.2.设是等差数列的前n项和,且,则()A. B. C.1 D.23.正四棱锥的五个顶点在同一个球面上,它的底面边长为,侧棱长为,则它的外接球的表面积为()A. B. C. D.4.已知集合A={0,1},B={0,1,2},则满足A∪C=B的集合C的个数为()A.4 B.3 C.2 D.15.函数的大致图像为()A. B.C. D.6.已知是虚数单位,则复数()A. B. C.2 D.7.已知非零向量满足,,且与的夹角为,则()A.6 B. C. D.38.已知集合,,则()A. B. C. D.9.已知向量,,则向量与的夹角为()A. B. C. D.10.已知命题p:若,,则;命题q:,使得”,则以下命题为真命题的是()A. B. C. D.11.一辆邮车从地往地运送邮件,沿途共有地,依次记为,,…(为地,为地).从地出发时,装上发往后面地的邮件各1件,到达后面各地后卸下前面各地发往该地的邮件,同时装上该地发往后面各地的邮件各1件,记该邮车到达,,…各地装卸完毕后剩余的邮件数记为.则的表达式为().A. B. C. D.12.某校团委对“学生性别与中学生追星是否有关”作了一次调查,利用列联表,由计算得,参照下表:0.010.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828得到正确结论是()A.有99%以上的把握认为“学生性别与中学生追星无关”B.有99%以上的把握认为“学生性别与中学生追星有关”C.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星无关”D.在犯错误的概率不超过0.5%的前提下,认为“学生性别与中学生追星有关”二、填空题:本题共4小题,每小题5分,共20分。13.二项式的展开式中所有项的二项式系数之和是64,则展开式中的常数项为______.14.已知均为非负实数,且,则的取值范围为______.15.点是曲线()图象上的一个定点,过点的切线方程为,则实数k的值为______.16.已知函数f(x)=若关于x的方程f(x)=kx有两个不同的实根,则实数k的取值范围是________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(Ⅰ)当时,求不等式的解集;(Ⅱ)若不等式对任意实数恒成立,求实数的取值范围.18.(12分)一个工厂在某年里连续10个月每月产品的总成本(万元)与该月产量(万件)之间有如下一组数据:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通过画散点图,发现可用线性回归模型拟合与的关系,请用相关系数加以说明;(2)①建立月总成本与月产量之间的回归方程;②通过建立的关于的回归方程,估计某月产量为1.98万件时,产品的总成本为多少万元?(均精确到0.001)附注:①参考数据:,,,,.②参考公式:相关系数,,.19.(12分)平面直角坐标系中,曲线:.直线经过点,且倾斜角为,以为极点,轴正半轴为极轴,建立极坐标系.(1)写出曲线的极坐标方程与直线的参数方程;(2)若直线与曲线相交于,两点,且,求实数的值.20.(12分)如图,为坐标原点,点为抛物线的焦点,且抛物线上点处的切线与圆相切于点(1)当直线的方程为时,求抛物线的方程;(2)当正数变化时,记分别为的面积,求的最小值.21.(12分)已知函数是减函数.(1)试确定a的值;(2)已知数列,求证:.22.(10分)已知函数.(1)若是的极值点,求的极大值;(2)求实数的范围,使得恒成立.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
设出直线的方程,代入椭圆方程中消去y,根据判别式大于0求得t的范围,进而利用弦长公式求得|AB|的表达式,利用t的范围求得|AB|的最大值.【详解】解:设直线l的方程为y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由题意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦长|AB|=4.故选:C.【点睛】本题主要考查了椭圆的应用,直线与椭圆的关系.常需要把直线与椭圆方程联立,利用韦达定理,判别式找到解决问题的突破口.2、C【解析】
利用等差数列的性质化简已知条件,求得的值.【详解】由于等差数列满足,所以,,.故选:C【点睛】本小题主要考查等差数列的性质,属于基础题.3、C【解析】
如图所示,在平面的投影为正方形的中心,故球心在上,计算长度,设球半径为,则,解得,得到答案.【详解】如图所示:在平面的投影为正方形的中心,故球心在上,,故,,设球半径为,则,解得,故.故选:.【点睛】本题考查了四棱锥的外接球问题,意在考查学生的空间想象能力和计算能力.4、A【解析】
由可确定集合中元素一定有的元素,然后列出满足题意的情况,得到答案.【详解】由可知集合中一定有元素2,所以符合要求的集合有,共4种情况,所以选A项.【点睛】考查集合并集运算,属于简单题.5、D【解析】
通过取特殊值逐项排除即可得到正确结果.【详解】函数的定义域为,当时,,排除B和C;当时,,排除A.故选:D.【点睛】本题考查图象的判断,取特殊值排除选项是基本手段,属中档题.6、A【解析】
根据复数的基本运算求解即可.【详解】.故选:A【点睛】本题主要考查了复数的基本运算,属于基础题.7、D【解析】
利用向量的加法的平行四边形法则,判断四边形的形状,推出结果即可.【详解】解:非零向量,满足,可知两个向量垂直,,且与的夹角为,说明以向量,为邻边,为对角线的平行四边形是正方形,所以则.故选:.【点睛】本题考查向量的几何意义,向量加法的平行四边形法则的应用,考查分析问题解决问题的能力,属于基础题.8、B【解析】
求出集合,利用集合的基本运算即可得到结论.【详解】由,得,则集合,所以,.故选:B.【点睛】本题主要考查集合的基本运算,利用函数的性质求出集合是解决本题的关键,属于基础题.9、C【解析】
求出,进而可求,即能求出向量夹角.【详解】解:由题意知,.则所以,则向量与的夹角为.故选:C.【点睛】本题考查了向量的坐标运算,考查了数量积的坐标表示.求向量夹角时,通常代入公式进行计算.10、B【解析】
先判断命题的真假,进而根据复合命题真假的真值表,即可得答案.【详解】,,因为,,所以,所以,即命题p为真命题;画出函数和图象,知命题q为假命题,所以为真.故选:B.【点睛】本题考查真假命题的概念,以及真值表的应用,解题的关键是判断出命题的真假,难度较易.11、D【解析】
根据题意,分析该邮车到第站时,一共装上的邮件和卸下的邮件数目,进而计算可得答案.【详解】解:根据题意,该邮车到第站时,一共装上了件邮件,需要卸下件邮件,则,故选:D.【点睛】本题主要考查数列递推公式的应用,属于中档题.12、B【解析】
通过与表中的数据6.635的比较,可以得出正确的选项.【详解】解:,可得有99%以上的把握认为“学生性别与中学生追星有关”,故选B.【点睛】本题考查了独立性检验的应用问题,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
由二项式系数性质求出,由二项展开式通项公式得出常数项的项数,从而得常数项.【详解】由题意,.展开式通项为,由得,∴常数项为.故答案为:.【点睛】本题考查二项式定理,考查二项式系数的性质,掌握二项展开式通项公式是解题关键.14、【解析】
设,可得的取值范围,分别利用基本不等式和,把用代换,结合的取值范围求关于的二次函数的最值即可求解.【详解】因为,,令,则,因为,当且仅当时等号成立,所以,,即,令则函数的对称轴为,所以当时函数有最大值为,即.当且,即,或,时取等号;因为,当且仅当时等号成立,所以,令,则函数的对称轴为,所以当时,函数有最小值为,即,当,且时取等号,所以.故答案为:【点睛】本题考查基本不等式与二次函数求最值相结合求代数式的取值范围;考查运算求解能力和知识的综合运用能力;基本不等式:和的灵活运用是求解本题的关键;属于综合型、难度大型试题.15、1【解析】
求出导函数,由切线斜率为4即导数为4求出切点横坐标,再由切线方程得纵坐标后可求得.【详解】设,由题意,∴,,,即,∴,.故答案为:1.【点睛】本题考查导数的几何意义,函数图象某点处的切线的斜率就是该点处导数值.本题属于基础题.16、【解析】由图可知,当直线y=kx在直线OA与x轴(不含它们)之间时,y=kx与y=f(x)的图像有两个不同交点,即方程有两个不相同的实根.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ);(Ⅱ).【解析】试题分析:(Ⅰ)分三种情况讨论,分别求解不等式组,然后求并集即可得不等式的解集;(Ⅱ)根据绝对值不等式的性质可得,不等式对任意实数恒成立,等价于,解不等式即可求的取值范围.试题解析:(Ⅰ)当时,即,①当时,得,所以;②当时,得,即,所以;③当时,得成立,所以.故不等式的解集为.(Ⅱ)因为,由题意得,则,解得,故的取值范围是.18、(1)见解析;(2)①②3.386(万元)【解析】
(1)利用代入数值,求出后即可得解;(2)①计算出、后,利用求出后即可得解;②把代入线性回归方程,计算即可得解.【详解】(1)由已知条件得,,∴,说明与正相关,且相关性很强.(2)①由已知求得,,所以,所求回归直线方程为.②当时,(万元),此时产品的总成本约为3.386万元.【点睛】本题考查了相关系数的应用以及线性回归方程的求解和应用,考查了计算能力,属于中档题.19、(Ⅰ)(t为参数);(Ⅱ)或或.【解析】
试题分析:本题主要考查极坐标方程、参数方程与直角方程的相互转化、直线与抛物线的位置关系等基础知识,考查学生的分析问题解决问题的能力、转化能力、计算能力.第一问,用,化简表达式,得到曲线的极坐标方程,由已知点和倾斜角得到直线的参数方程;第二问,直线方程与曲线方程联立,消参,解出的值.试题解析:(1)即,.(2),符合题意考点:本题主要考查:1.极坐标方程,参数方程与直角方程的相互转化;2.直线与抛物线的位置关系.20、(1)x2=4y.(2).【解析】试题解析:(Ⅰ)设点P(x0,),由x2=2py(p>0)得,y=,求导y′=,因为直线PQ的斜率为1,所以=1且x0--√2=0,解得p=2,所以抛物线C1的方程为x2=4y.(Ⅱ)因为点P处的切线方程为:y-=(x-x0),即2x0x-2py-x02=0,∴OQ的方程为y=-x根据切线与圆切,得d=r,即,化简得x04=4x02+4p2,由方程组,解得Q(,),所以|PQ|=√1+k2|xP-xQ|=点F(0,)到切线PQ的距离是d=,所以S1==,S2=,而由x04=4x02+4p2知,4p2=x04-4x02>0,得|x0|>2,所以==+1≥2+1,当且仅当时取“=”号,即x02=4+2,此时,p=.所以的最小值为2+1.考点:求抛物线的方程,与抛物线有关的最值问题.21、(Ⅰ)(Ⅱ)见证明【解析】
(Ⅰ)求导得,由是减函数得,对任意的,都有恒成立,构造函数,通过求导判断它的单调性,令其最大值小于等于0,即可求出;(Ⅱ)由是减函数,且可得,当时,,则,即,两边同除以得,,即,从而,两边取对数,然后再证明恒成立即可,构造函数,,通过求导证明即可.【详解】解:(Ⅰ)的定义域为,.由是减函数得,对任意的,都有恒成立.设.∵,由知,∴当时,;当时,,∴在上单调递增,在上单调递减,∴在时取得最大值.又∵,∴对任意的,恒成立,即的最大值为.∴,解得.(Ⅱ)由是减函数,且可得,当时,,∴,即.两边同除以得,,即.从而,所以①.下面证;记,.∴,∵在上单调递增,∴在上单调递减,而,∴当时,恒成立,∴在上单调递减,即时,,∴当时,.∵,∴当时,,即②.综上①②可得,.【点睛】本题考查了导数与函数的单调性的关系,考查了函数的最值,考查了构造函数的能力,考查了逻辑推理能力与计算求解能力,属于难题.,22、(1).(2)【解析】
(1)先对函数求导,结合极值存在的条件可求t,然后结合导数可
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T/CATCM 027-2023中药固体废弃物制备有机肥技术规范
- T/CAQI 85-2019空气净化器智能模式技术要求及试验方法
- T/CAQI 135-2020产品质量鉴定程序规范机械设备的特殊要求
- 招银科技成都java面试题及答案
- 防疫阶段面试题及答案
- 国内大厂面试题及答案
- 分析中考试题及答案
- T/CADBM 77-2024聚合物装饰水泥
- 肛门闭锁的临床护理
- 一般交通事故赔偿协议书
- 《林业基础知识》考试复习题库(含答案)
- 电影《白日梦想家》课件
- 新版中国食物成分表
- 团员发展纪实簿
- 酶工程习题(答案全)
- 食物损失和浪费控制程序
- 附件3:微创介入中心评审实施细则2024年修订版
- 信创的基础知识培训课件
- 全国国道大全(包括里程及路过城市)
- 化学品作业场所安全警示标志大全
- T-QGCML 3384-2024 无人值守地磅收验货系统配置规范
评论
0/150
提交评论