版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第3章一次方程与方程组3.4二元一次方程组及其解法第3课时
加减消元法学习目标1.会用加减消元法解二元一次方程组.2.进一步理解二元一次方程组的“消元”思想,初步体会数学研究中“化未知为已知”的化归思想.3.选择恰当的方法解二元一次方程组,培养学生的观察、分析能力.学习重难点会用加减消元法解二元一次方程组.在解题过程中进一步体会“消元”思想和“化未知为已知”的化归思想.难点重点问题导入怎样解下面的二元一次方程组呢?
还有其他的方法解二元一次方程组吗?新知探究
“鸡兔同笼”是我国古代数学著作《孙子算经》上的一道题.今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何.思考:
x+y=35,
①
x+2y=47.②解问题1中的方程组,除代入消元法外,是否还有别的消元方法?问题1根据等式的性质,可这样来考虑.
x+y=35.①
x+2y=47.②方程②的两边分别减去方程①的两边,得
2y-y=47-35.这样也得到一个一元一次方程.解方程,得
y=12.把y=12代入①,得
x+12=35.解方程,得
x=23.所以x=23,
y=12.归纳总结
像这样把两个方程的两边分别相加或相减消去一个未知数的方法叫作加减消元法,简称加减法.例2.解方程组:
4x+y=14,①
8x+3y=30.
②例题解读
分析:在这个方程组中,直接将两个方程相加或相减,都不能消去未知数x或y,怎么办?我们可以利用等式的性质2对其中一个(或两个)方程进行变形,使得这个方程组中x或y的系数相等或互为相反数,再来求解.解:将①×2,得
8x+2y=28.
③②-③,得
y=2.把y=2代入①,得
4x+2=14.
x=3.所以x=3,
y=2.例3解方程组:
4x+2y=-5,①
5x-3y=-9.
②分析:比较方程组中的两个方程,y的系数的绝对值比较小,①×3,②×2,就可使y的系数绝对值相等,再用加减法即可消去y.归纳总结
加减消元法通过“把两个方程相加减”实现消元,加减的条件是“两个二元一次方程中同一未知数的系数相等或互为相反数”.随堂练习
B①②①②B3.解下列方程组:解:(1)由①+②,得3x=9,x=3.将x=3代入①,得3-y=5,y=-2.所以原方程组的解是
x=3,
y=-2.解:(2)由①-②,得x=2,将x=2代入①,得-2+y=3,y=5.所以原方程组的解是
x=2,
y=5.①②①②4.已知x、y满足方程组
求代数式x-y的值.解:
①×3,得3x+9y=15,③
③-②,得8y=16,
y=2.将y=2代入①,得
x+6=5,
x=-1
所以x-y=-3.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年梅州市工业和备考题库化局公开招聘劳务派遣人员备考题库及1套参考答案详解
- 2026年际华三五一三实业有限公司招聘备考题库及答案详解1套
- 2026年辉南县消防救援大队招聘消防文员的备考题库参考答案详解
- 云南省昆明市晋宁区人民法院2025年公开招聘合同制人员备考题库及1套参考答案详解
- 合肥市六安路小学荣城花园分校2026年春季学期招聘编外聘用教师备考题库及一套参考答案详解
- 中学学生社团指导教师选拔制度
- 2026年黄冈市兴黄投资引导基金有限公司面向社会公开招聘备考题库及参考答案详解一套
- 养老院投诉处理制度
- 2026年郫都区中信大道幼儿园招聘教师备考题库参考答案详解
- 企业员工培训与职业发展策略制度
- 核电行业防造假管理制度
- 要素式强制执行申请书(申请执行用)
- 2025年4月自考00609高级日语(一)试题
- 新疆阿合奇托什干河国家湿地公园建设项目环境影响报告书
- 维修工作计划模板范文
- DB13(J)-T 8401-2021 钢丝网片复合保温板应用技术标准
- 设计公司部门领导发言稿
- 深圳科技馆新馆展教工程常设展区整体展教方案
- 《重庆市北碚区高标准农田建设规划2021-2030年》
- T-CI 451-2024 构网型光伏变换器并网技术规范
- 《公路工程预算定额》(JTGT3832-2018)
评论
0/150
提交评论