




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
黑龙江省鸡西虎林市东方红林业局2025届高考冲刺押题(最后一卷)数学试卷注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.甲、乙、丙三人相约晚上在某地会面,已知这三人都不会违约且无两人同时到达,则甲第一个到、丙第三个到的概率是()A. B. C. D.2.为得到y=sin(2x-πA.向左平移π3个单位B.向左平移πC.向右平移π3个单位D.向右平移π3.点为的三条中线的交点,且,,则的值为()A. B. C. D.4.已知三棱柱的所有棱长均相等,侧棱平面,过作平面与平行,设平面与平面的交线为,记直线与直线所成锐角分别为,则这三个角的大小关系为()A. B.C. D.5.在中,“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.已知命题:使成立.则为()A.均成立 B.均成立C.使成立 D.使成立7.在正方体中,点,,分别为棱,,的中点,给出下列命题:①;②;③平面;④和成角为.正确命题的个数是()A.0 B.1 C.2 D.38.已知数列中,,(),则等于()A. B. C. D.29.函数(其中,,)的图象如图,则此函数表达式为()A. B.C. D.10.已知椭圆的左、右焦点分别为,,上顶点为点,延长交椭圆于点,若为等腰三角形,则椭圆的离心率A. B.C. D.11.下列结论中正确的个数是()①已知函数是一次函数,若数列通项公式为,则该数列是等差数列;②若直线上有两个不同的点到平面的距离相等,则;③在中,“”是“”的必要不充分条件;④若,则的最大值为2.A.1 B.2 C.3 D.012.复数(i为虚数单位)的共轭复数是A.1+i B.1−i C.−1+i D.−1−i二、填空题:本题共4小题,每小题5分,共20分。13.在如图所示的三角形数阵中,用表示第行第个数,已知,且当时,每行中的其他各数均等于其“肩膀”上的两个数之和,即,若,则正整数的最小值为______.14.某市高三理科学生有名,在一次调研测试中,数学成绩服从正态分布,已知,若按成绩分层抽样的方式取份试卷进行分析,则应从分以上的试卷中抽取的份数为__________.15.在平面直角坐标系中,曲线上任意一点到直线的距离的最小值为________.16.已知等比数列{an}的前n项和为Sn,若a2三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)当时,解关于的不等式;(2)若对任意,都存在,使得不等式成立,求实数的取值范围.18.(12分)如图,平面四边形中,,是上的一点,是的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求直线与平面所成角的正弦值.19.(12分)在平面直角坐标系中,已知直线(为参数),以坐标原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求曲线的直角坐标方程;(2)设点的极坐标为,直线与曲线的交点为,求的值.20.(12分)如图,在四棱锥中,底面为直角梯形,,,,,,点、分别为,的中点,且平面平面.(1)求证:平面.(2)若,求直线与平面所成角的正弦值.21.(12分)对于给定的正整数k,若各项均不为0的数列满足:对任意正整数总成立,则称数列是“数列”.(1)证明:等比数列是“数列”;(2)若数列既是“数列”又是“数列”,证明:数列是等比数列.22.(10分)某工厂生产某种电子产品,每件产品不合格的概率均为,现工厂为提高产品声誉,要求在交付用户前每件产品都通过合格检验,已知该工厂的检验仪器一次最多可检验件该产品,且每件产品检验合格与否相互独立.若每件产品均检验一次,所需检验费用较多,该工厂提出以下检验方案:将产品每个一组进行分组检验,如果某一组产品检验合格,则说明该组内产品均合格,若检验不合格,则说明该组内有不合格产品,再对该组内每一件产品单独进行检验,如此,每一组产品只需检验次或次.设该工厂生产件该产品,记每件产品的平均检验次数为.(1)求的分布列及其期望;(2)(i)试说明,当越小时,该方案越合理,即所需平均检验次数越少;(ii)当时,求使该方案最合理时的值及件该产品的平均检验次数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
先判断是一个古典概型,列举出甲、乙、丙三人相约到达的基本事件种数,再得到甲第一个到、丙第三个到的基本事件的种数,利用古典概型的概率公式求解.【详解】甲、乙、丙三人相约到达的基本事件有甲乙丙,甲丙乙,乙甲丙,乙丙甲,丙甲乙,丙乙甲,共6种,其中甲第一个到、丙第三个到有甲乙丙,共1种,所以甲第一个到、丙第三个到的概率是.故选:D【点睛】本题主要考查古典概型的概率求法,还考查了理解辨析的能力,属于基础题.2、D【解析】试题分析:因为,所以为得到y=sin(2x-π3)的图象,只需要将考点:三角函数的图像变换.3、B【解析】
可画出图形,根据条件可得,从而可解出,然后根据,进行数量积的运算即可求出.【详解】如图:点为的三条中线的交点,由可得:,又因,,.故选:B【点睛】本题考查三角形重心的定义及性质,向量加法的平行四边形法则,向量加法、减法和数乘的几何意义,向量的数乘运算及向量的数量积的运算,考查运算求解能力,属于中档题.4、B【解析】
利用图形作出空间中两直线所成的角,然后利用余弦定理求解即可.【详解】如图,,设为的中点,为的中点,由图可知过且与平行的平面为平面,所以直线即为直线,由题易知,的补角,分别为,设三棱柱的棱长为2,在中,,;在中,,;在中,,,.故选:B【点睛】本题主要考查了空间中两直线所成角的计算,考查了学生的作图,用图能力,体现了学生直观想象的核心素养.5、C【解析】
由余弦函数的单调性找出的等价条件为,再利用大角对大边,结合正弦定理可判断出“”是“”的充分必要条件.【详解】余弦函数在区间上单调递减,且,,由,可得,,由正弦定理可得.因此,“”是“”的充分必要条件.故选:C.【点睛】本题考查充分必要条件的判定,同时也考查了余弦函数的单调性、大角对大边以及正弦定理的应用,考查推理能力,属于中等题.6、A【解析】试题分析:原命题为特称命题,故其否定为全称命题,即.考点:全称命题.7、C【解析】
建立空间直角坐标系,利用向量的方法对四个命题逐一分析,由此得出正确命题的个数.【详解】设正方体边长为,建立空间直角坐标系如下图所示,,.①,,所以,故①正确.②,,不存在实数使,故不成立,故②错误.③,,,故平面不成立,故③错误.④,,设和成角为,则,由于,所以,故④正确.综上所述,正确的命题有个.故选:C【点睛】本小题主要考查空间线线、线面位置关系的向量判断方法,考查运算求解能力,属于中档题.8、A【解析】
分别代值计算可得,观察可得数列是以3为周期的周期数列,问题得以解决.【详解】解:∵,(),
,
,
,
,
…,
∴数列是以3为周期的周期数列,
,
,
故选:A.【点睛】本题考查数列的周期性和运用:求数列中的项,考查运算能力,属于基础题.9、B【解析】
由图象的顶点坐标求出,由周期求出,通过图象经过点,求出,从而得出函数解析式.【详解】解:由图象知,,则,图中的点应对应正弦曲线中的点,所以,解得,故函数表达式为.故选:B.【点睛】本题主要考查三角函数图象及性质,三角函数的解析式等基础知识;考查考生的化归与转化思想,数形结合思想,属于基础题.10、B【解析】
设,则,,因为,所以.若,则,所以,所以,不符合题意,所以,则,所以,所以,,设,则,在中,易得,所以,解得(负值舍去),所以椭圆的离心率.故选B.11、B【解析】
根据等差数列的定义,线面关系,余弦函数以及基本不等式一一判断即可;【详解】解:①已知函数是一次函数,若数列的通项公式为,可得为一次项系数),则该数列是等差数列,故①正确;②若直线上有两个不同的点到平面的距离相等,则与可以相交或平行,故②错误;③在中,,而余弦函数在区间上单调递减,故“”可得“”,由“”可得“”,故“”是“”的充要条件,故③错误;④若,则,所以,当且仅当时取等号,故④正确;综上可得正确的有①④共2个;故选:B【点睛】本题考查命题的真假判断,主要是正弦定理的运用和等比数列的求和公式、等差数列的定义和不等式的性质,考查运算能力和推理能力,属于中档题.12、B【解析】分析:化简已知复数z,由共轭复数的定义可得.详解:化简可得z=∴z的共轭复数为1﹣i.故选B.点睛:本题考查复数的代数形式的运算,涉及共轭复数,属基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2022【解析】
根据条件先求出数列的通项,利用累加法进行求解即可.【详解】,,,下面求数列的通项,由题意知,,,,,,数列是递增数列,且,的最小值为.故答案为:.【点睛】本题主要考查归纳推理的应用,结合数列的性质求出数列的通项是解决本题的关键.综合性较强,属于难题.14、【解析】
由题意结合正态分布曲线可得分以上的概率,乘以可得.【详解】解:,所以应从分以上的试卷中抽取份.故答案为:.【点睛】本题考查正态分布曲线,属于基础题.15、【解析】
解法一:曲线上任取一点,利用基本不等式可求出该点到直线的距离的最小值;解法二:曲线函数解析式为,由求出切点坐标,再计算出切点到直线的距离即可所求答案.【详解】解法一(基本不等式):在曲线上任取一点,该点到直线的距离为,当且仅当时,即当时,等号成立,因此,曲线上任意一点到直线距离的最小值为;解法二(导数法):曲线的函数解析式为,则,设过曲线上任意一点的切线与直线平行,则,解得,当时,到直线的距离;当时,到直线的距离.所以曲线上任意一点到直线的距离的最小值为.故答案为:.【点睛】本题考查曲线上一点到直线距离最小值的计算,可转化为利用切线与直线平行来找出切点,转化为切点到直线的距离,也可以设曲线上的动点坐标,利用基本不等式法或函数的最值进行求解,考查分析问题和解决问题的能力,属于中等题.16、-2【解析】试题分析:∵a2考点:等比数列性质及求和公式三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解析】
(1)分类讨论去绝对值号,然后解不等式即可.(2)因为对任意,都存在,使得不等式成立,等价于,根据绝对值不等式易求,根据二次函数易求,然后解不等式即可.【详解】解:(1)当时,,则当时,由得,,解得;当时,恒成立;当时,由得,,解得.所以的解集为(2)对任意,都存在,得成立,等价于.因为,所以,且|,①当时,①式等号成立,即.又因为,②当时,②式等号成立,即.所以,即即的取值范围为:.【点睛】知识:考查含两个绝对值号的不等式的解法;恒成立问题和存在性问题求参变数的范围问题;能力:分析问题和解决问题的能力以及运算求解能力;中档题.18、(1)见解析;(2)【解析】
(1)要证平面平面,只需证平面,而,所以只需证,而由已知的数据可证得为等边三角形,又由于是的中点,所以,从而可证得结论;(2)由于在中,,而平面平面,所以点在平面的投影恰好为的中点,所以如图建立空间直角坐标系,利用空间向量求解.【详解】(1)由,所以平面四边形为直角梯形,设,因为.所以在中,,则,又,所以,由,所以为等边三角形,又是的中点,所以,又平面,则有平面,而平面,故平面平面.(2)解法一:在中,,取中点,所以,由(1)可知平面平面,平面平面,所以平面,以为坐标原点,方向为轴方向,建立如图所示的空间直角坐标系,则,,设平面的法向量,由得取,则设直线与平面所成角大小为,则,故直线与平面所成角的正弦值为.解法二:在中,,取中点,所以,由(1)可知平面平面,平面平面,所以平面,过作于,连,则由平面平面,所以,又,则平面,又平面所以,在中,,所以,设到平面的距离为,由,即,即,可得,设直线与平面所成角大小为,则.故直线与平面所成角的正弦值为.【点睛】此题考查的是立体几何中的证明面面垂直和求线面角,考查学生的转化思想和计算能力,属于中档题.19、(1)(2)【解析】
(1)由公式可化极坐标方程为直角坐标方程;(2)把点极坐标化为直角坐标,直线的参数方程是过定点的标准形式,因此直接把参数方程代入曲线的方程,利用参数的几何意义求解.【详解】解:(1),则,∴,所以曲线的直角坐标方程为,即(2)点的直角坐标为,易知.设对应参数分别为将与联立得【点睛】本题考查极坐标方程与直角坐标方程的互化,考查直线参数方程,解题时可利用利用参数方程的几何意义求直线上两点间距离问题.20、(1)见解析(2)【解析】
(1)首先可得,再面面垂直的性质可得平面,即可得到,再由,即可得到线面垂直;(2)过点做平面的垂线,以为原点,分别以,,为,,轴建立空间直角坐标系,利用空间向量法求出线面角;【详解】解:(1)∵,点为的中点,∴,又∵平面平面,平面平面,平面,∴平面,又平面,∴,又∵,分别为,的中点,∴,∴,又平面,平面,,∴平面.(2)过点做平面的垂线,以为原点,分别以,,为,,轴建立空间直角坐标系,∵,∴,,,,∴,,,设平面的法向量为,由,得,令,得,∴,∴直线与平面所成角的正弦值为.【点睛】本题考查线面垂直的判定,面面垂直的性质定理的应用,利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025内蒙古中煤鄂能化公司高校毕业生招聘98人笔试参考题库附带答案详解
- 2025中国人寿田林支公司招聘17人笔试参考题库附带答案详解
- 12MWh储能电站项目可行性研究报告分析
- 筋膜间室综合征解读课件
- 网络运维笔试题及答案
- 驱逐老鼠测试题及答案
- 纺织材料市场动态分析试题及答案
- 大型超市供货合同协议书
- 餐饮合同解除协议书
- 表白合同协议书
- 吉林市富源石材有限公司三佳子饰面花岗岩及周边矿区矿山地质环境保护与土地复垦方案
- 2022年上海奉贤经济发展有限公司招聘笔试题库及答案解析
- 混凝土氯离子含量试验检测记录表(选择性电极法)
- 纳税实务(第三版)项目一纳税基础知识
- 新教材人教版高中数学必修第二册全册教案(教学设计)
- DB23∕T 440-1996 柞蚕生产技术规程
- 药物溶解与溶出及释放-精品医学课件
- 汇源果汁生产废水处理工程设计
- TIG焊充氩仓的应用
- 魔方基础教程 三阶魔方简化教程
- 安徽高中毕业生登记表(共7页)
评论
0/150
提交评论