




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
Simulation-BasedDesignofElectricDriveSystemsDesignofdrivesystemsSelectionofcomponentsizesFilterandenergystorageelementsinthedrivecircuit;SwitchingfrequencyControllertuningControllertuningforimproved/optimaldynamicresponse;RobustoptimalcontrolDesigncompromiseCostvs.performanceSensitivityvs.performanceDesignmethodologies(1)Simplified-modelbasedAsimplified,low-ordermathematicalmodelisusedasthebasis;Pros:Simple,inexpensive,easytouseCons:Lessaccuracy,andun-modeleddynamicsparticularlyinhighfrequencies;Thefinaldesignmaynotperformasintendedduetotheabove.Designmethodologies(2)Simulation-modelbasedAdetailedcomputersimulationmodelisusedasthebasis;Pros:Noneedtodevelopamathematicalmodel;Higheraccuracy;Inclusionofhigher-orderdynamics;Cons:Lessintuitive;potentiallytimeconsuming;Simulation-baseddesignapproaches(1)TrialanderrorEngineeringjudgmentisusedtoconduct(alargenumberof)simulation-basedexperimentstodetermineasuitabledesign;Pros:Humanexpertiseisfullydeployedinsteeringthesequenceofsimulationexperiments;Cons:Timeconsuming;Mayinhibitexhaustivesearch.Simulation-baseddesignapproaches(2)Simulation-basedoptimaldesignAnoptimizationalgorithmiscoupledwithahigh-fidelitysimulationmodeltoconductastrategicsequenceofsimulationexperimentstoyieldanoptimaldesign;Pros:Fullyautomatedsearch;Rapidconvergencetotheoptimaldesign;Cons:Requiresexpertiseindefiningaproperobjectivefunction.Simulation-basedoptimaldesignnonlinearoptimizationalgorithmparametersetxsimulationmodelofthedrivesystemobjectivefunctionf(x)ncontrollerparameters,componentsizes,switchingfrequency,etc.figureofmeritforthecurrentlyusedparametersetDevelopmentofanobjectivefunctionTheobjectivefunctionisamathematicalrepresentationofthedesigngoals;Mustbeevaluatedthroughsimulation;Neednotbeexplicitlyavailableasafunctionoftheoptimizationparameters;Example:PropertiesoftheoptimizationalgorithmSinceexplicitformulationisnotavailable,non-gradientoptimizationalgorithmsarepreferred;Globalvs.localoptimizationalgorithms:Global:Searchesfortheglobalsolution;theonewiththebestoutcome;Local:Searchesforalocalsolution.Examplecase1IndirectvectorcontroldrivesystemoptimizationCasespecifics(1)Inductionmachineparameters2300V,500hp,4-pole,60Hz,rs=0.262W,rr=0.187W,Xls
=1.206W,Xlr
=1.206W,XM=54.02WCasespecifics(2)Circuitdiagramdiode
bridgeLdc+-vdciaCdcCdcVSCinduction
machine+rotor
speed(elec.
rad/s)+iqs-refids-reflr-ref
=ldr-refTe-refqe
we
wr
wref+PI
speed
controller-qdoàabcPWMvabc-refgate
pulsesPI
controller
+
decouplingPI
controller
+
decouplingvqs-refvds-refindirectvector
control+-iq-id+Designobjectives(1)Toensurethatthespeedfollowsthereferenceascloselyaspossible;Tominimizethetorqueripple;Toreducetherippleonthedcvoltageacrossthedclinkcapacitors;Todotheabovewithsmallenergystoringelements.Designobjectives(2)ObjectivefunctionSub-objectivesResults(1)BeforeoptimizationAfteroptimizationResults(2)Thinline:beforeoptimizationThinkline:AfteroptimizationResults(3)Parameters
KqTqKdTdKwTwLdcCdcInitial300.5300.52000.51mH500mFOptimized6.931.28264.70.68280.81.960.5mH4269mFObjectives
f1f2f3f4fInitial0.000430.00910.041550.6189.72Optimized0.0000380.00590.000481.10523.25Examplecase2Multi-objectiveoptimizationRationale Designoftenpursuesmorethanasingleobjective;Designobjectivesarecombinedinanaggregateobjectivefunction;Propercompromisemustbemadebetweenthecompetingobjectives.Casespecifics(1)Ascalarinductionmachinedrivewiththefollowingobjectives:Toensurerapidandsmoothtransientresponsetotorquecommands;Toobtainsmallrippleonthedcvoltageandcurrentinsteadystate.Thetwoobjectivespresentaconflictingcase:Largerenergystorageelementsimprovetheripple;Largerenergystorageelementsmakethedynamicresponseslow.Casespecifics(2)ObjectivefunctionCombinationofsteadystate(ripple)anddynamic(controlresponse)Bychangingkover[0,1],thefocusoftheoptimizationalgorithmshiftsfromfss(k≈1)toftr
(k≈0);Itisaminimizationproblem.Results(1)TheParetofrontierpoorftrandgoodfsscompromisegoodftrandpoorfssResults(2)PointAPointCPointBExamplecase3 MultipleoptimalsolutionsRationaleObjectivefunctionsmayhavemorethanlocallyoptimalsolution;Globaloptimumhasthebestquality,but:Itmaybeimpracticaltoimplement,e.g.componentsizestoolargeItmaybeexcessivelysensitive:anysmalldeviationintheparameterscausesdeteriorationoftheresultsItisthereforeimportanttoobtainasmanyoptimalsolutionsaspossible.CasespecificsDesignobjectivesToensurethatthespeedfollowsthereferenceascloselyaspossible;To
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年中国无阻力轴向补偿器数据监测研究报告
- 2025年中国数码控制箱市场调查研究报告
- 2025-2030年中国亚氯酸钠项目投资风险研究报告
- 2025至2031年中国绒把手记数跳绳行业投资前景及策略咨询研究报告
- 2025至2031年中国绝缘油介电强度自动测定仪行业投资前景及策略咨询研究报告
- 小学一年级语文下册《口语交际:一起做游戏》指导
- 新疆司法警官职业学院《毕业论文写作与作品设计》2023-2024学年第二学期期末试卷
- 2025-2030年中国4,4′行业运行态势及投资风险评估报告
- 新疆伊犁州2025年初三下学期第一次模拟考试语文试题试卷含解析
- 2025-2030年中国TETRA数字集群无线电系统行业发展现状分析及投资前景预测研究报告
- 上海2025届高考模拟数学试卷02(解析版)
- 2024年中国光大银行深圳分行招聘考试真题
- 节目招商合同协议
- 甘肃酿皮子制作方法
- 达梦数据库培训
- 食堂节约管理制度规范
- 绿化工程安全教育培训
- 漂流免责协议书范本
- ISO27001:2022信息安全管理体系全套文件+表单
- 2024-2025学年人教版四年级数学下册期中测试卷1-4单元(含答案)
- 红色旅游知到智慧树章节测试课后答案2024年秋南昌大学
评论
0/150
提交评论