版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
CUDAProgramming
(GPUProgramming)Instructor:ZhangWeizhe(张伟哲)ComputerNetworkandInformationSecurityTechniqueResearchCenter,SchoolofComputerScienceandTechnology,HarbinInstituteofTechnologyMotivation动机GPUArchitectureGPU架构Threewaystoaccelerateapplications三种加速应用的方法CUDAProgrammingModelCUDA编程模型CUDAProgrammingBasicsCUDA编程基础Outline3ASimpleExampleThreeIntegerArrays
A[N]B[N]C[N]Wewanttocalculate
C[i]=A[i]+B[i]
4Traditionally,onthecpu(serial) for(i=0;i<N;++i)
C[i]=A[i]+B[i] T(N)=O(N)5Traditionally,onthecpu(parallel)createNthreads
C[threadid.i]=A[threadid.i]+B[threadid.i]
T(N)=O(1)6GPUComputingButthereisaproblem.ApplicationslikeNeedthousandsofthreadstoexecuteMotivationGPUArchitectureThreewaystoaccelerateapplicationsCUDAProgrammingModelCUDAProgrammingBasicsOutline8AsimplecomparisonbetweenCPUandGPU
9AdetaileddescriptionGraphicsProcessingClusters(GPCs)TextureProcessingClusters(TPCs)StreamingMultiprocessors(SM)10pascal-architecture-whitepaperMotivationGPUArchitectureThreewaystoaccelerateapplicationsCUDAProgrammingModelCUDAProgrammingBasicsOutline12ThreemethodsCUDAOptimizedLibrariesProgrammingLanguages13ThreemethodsCUDAOptimizedLibrariesTheselibrariesarewritteninCUDASimplyreplaceyourstandardlibraryfunctionswithcorrespondingCUDAlibrariesItsupportsmanymathlibrariesbutnotallasupportedlistcanbefoundat/gpu-accelerated-libraries
14ThreemethodsItisadirective-basedprogrammingmodelYouneedtoisnertsomedirectivesinyourcodeUseopenacccompilertocompilethecode15ThreemethodsProgrammingLanguagesMotivationGPUArchitectureThreewaystoaccelerateapplicationsCUDAProgrammingModelCUDAProgrammingBasicsOutlineCUDAProgrammingModelPrerequestforCUDAProgrammingCUDAExecutionFlowCUDAThreadsCUDAMemoryModelOutline18PrerequestforCUDAProgrammingHardwareANvidiaGraphicscard:Itcanbeaspecializedcomputingcard,likeTeslaPascalGP100(tooexpensive),oranormalgamegraphiccard,likeGTorGTX.CheckwheteryourGPUsupportsCUDA:youcancheckoutthiswebsite/cuda-gpus
Clickon19PrerequestforCUDAProgrammingSoftwareCUDAToolkit:It’ssupportedonWindows,Mac,andmoststandardLinuxdistributions.Downloadfromhttps:///cuda-toolkitVisualStudio(ifonwindows):IfyouworkonWindows,forIknow,VSistheonlyIDEthatcanworkwithCUDA.Ifyoudon’twanttoinstallVS,youcanusetheCUDAcompilerNVCCdirectlyfromacommandline.CUDAProgrammingModelPrerequestforCUDAProgrammingCUDAExecutionFlowCUDAThreadsCUDAMemoryModelOutline21CUDAExecutionFlowCUDAApplicationHost=CPUDevice=GPUHost=CPUDevice=GPUParallelcodeSerialcodeSerialcodeParallelcode22CUDAExecutionFlow1.CopydatafromCPUmemorytoGPUmemory23CUDAExecutionFlowInstructtheGPUtostartcomputing24CUDAExecutionFlowCopytheresultsbacktoCPUmemoryCUDAProgrammingModelPrerequestforCUDAProgrammingCUDAExecutionFlowCUDAThreadsCUDAMemoryModelOutline26CUDAThreadsParallelportionofanapplicatonfloatx=in[threadIdx.x];floaty=func(x);out[threadIdx.x]=y;
in[i]in[i+1]in[i+2]in[i+3]out[i]out[i+1]out[i+2]out[i+3]AkernelisafunctionexecutedontheGPUasanarrayofthreadsinparallelandcanbecalledfromCPUAllthreadsexecutethesamecode,cantakedifferentpathsEachthreadhasanID27CUDAThreads.....…..WarpWarpBlock28CUDAThreads.....Warp32ThreadsaregroupedintowarpsAwarpinCUDAistheminimumsizeofthedataprocessedinSIMDfashionbyaCUDAmultiprocessor.ThreadIDswithinawarpareconsecutiveandincreasingWarpisunitofthreadschedulinginSMs29CUDAThreads.....WarpOneorMorewarpsaregroupedintoblocksAthreadblockisbatchofthreadsthatcancooperatewitheachotherbysharingdatathroughsharedmemoryandsynchronizingtheirexecution.Ablockcanatmostcontain1024threadsbecasuseofthehardwaresourcelimitThethreadidisuniqueandstartsfromzeroinablockWarp30CUDAThreadsBlockBlockBlockBlockBlockBlockGridAkernelwillbeexecutedasagrid31CUDAThreadsKernelGridBlock0Block1Block2Block3Block4Block5Block6Block7Devicewith2SMsSM0SM1Block0Block1Block2Block3Block4Block5Block6Block7CUDAThreads32KernelGridBlock0Block1Block2Block3Block4Block5Block6Block7Devicewith4SMsSM0SM1SM2SM4Block0Block4Block1Block5Block2Block6Block3Block7CUDAThreads33CUDAThreads34Block0CUDAThreads35Allthreadswithinawarpmustexecutethesameinstructionatanygiventime,butthiswillyieldsaproblem:branchdivergenceExamplewithdivergence:If(threadIdx.x>2){…}ThiscreatestwodifferentcontrolpathsforthreadsinablockToavoidthis:If(threadIdx.x/WARP_SIZE>2){…}Alsocreatestwodifferentcontrolpathsforthreadsinablock,butthegranularityisawholemultipleofwarpsize;allthreadsinanygivenwarpfollowthesamepath.Sodon’tusethiskindofcode,letthewholewarpdothesamework.CUDAThreads36Allthreadswithinawarpmustexecutethesameinstructionatanygiventime,butthiswillyieldsaproblembranchdivergenceExamplewithdivergence:
If(threadIdx.x%2==0){…} else{…}ThiscreatestwodifferentcontrolpathsforthreadsinablockCUDAThreads37
If(threadIdx.x%2==0){…}else{…}CUDAThreads38If(threadIdx.x/WARP_SIZE==0){…}Else{…}Alsocreatestwodifferentcontrolpathsforthreadsinablock,butthegranularityisawholemultipleofwarpsize;allthreadsinanygivenwarpfollowthesamepath.Letthewholewarpdothesamework.CUDAProgrammingModelPrerequestforCUDAProgrammingCUDAExecutionFlowCUDAThreadsCUDAMemoryModelOutlineGlobalMemory&SyntaxGlobalmemoryisthe“main”memoryoftheGPU.Ithasglobalscopeandlifetimeoftheallocatingprogram(oruntilcudaFreeiscalled)GlobalmemoryissimilartotheheapinaCprogram.GlobalmemorysyntaxAllocatewithcudaMalloc(void**devPtr,size_tsize)FreewithcudaMalloc(void*devPtr)40intblk_sz=64;float*Md;intsize=blk_sz*blk_sz*sizeof(float);cudaMalloc((void**)&Md,size);…cudaFree(Md);Host-DeviceDataTransfercudaMemcpy()MemorydatatransferRequiresfourparametersPointertodestinationPointertosourceNumberofbytescopiedType/DirectionoftransferHosttoHost,HosttoDevice,DevicetoHost,DevicetoDeviceTransfertodeviceisasynchronous41cudaMemcpy(Md,M.elements,size,cudaMemcpyHostToDevice);cudaMemcpy(M.elements,Md,size,cudaMemcpyDeviceToHost);CPUMemoryGPUGPUMemoryCPUPCI-E8GB/sGDDR5190GB/sConstantMemory&SyntaxConstantmemoryisaformofvirtualaddressingofglobalmemory.SpecialpropertiesCached&read-onlySupportsbroadcastingasinglevaluetoalltheelementswithinawarpConstantmemoryisrestrictedto64KB(kernelargumentsarepassedthroughconstantmemory)ConstantmemorysyntaxInglobalscope(outsideofkernel,attoplevelofprogram)__constant__int
foo[2014];InhostcodecudaMemcpyToSymbol(foo,h_src,sizeof(int)*1024);42TextureMemoryComplicatedandonlymarginallyusefulforgeneralpurposecomputationUsefulcharacteristics2Dor3Ddatalocalityforcachingpurposesthrough“CUDAarrays”.GoesintospecialtexturecacheFastinterpolationon1D,2D,or3DarrayConvertingintegersto“unitized”floatingpointnumbers43It’sacomplextopic,youcanlearneverythingyouwanttoknowaboutitfromCUDAHandbookSharedMemory&SyntaxSharedmemoryisusedtoexchangedatabetweenCUDAthreadswithinablock.VeryfastmemorylocatedintheSMOn-chipmemory,low-latency,user-controlledL1cacheSharedmemorysyntaxStaticallocation__shared__floatdata[1024];//declarationinkernel,nothinginhostcodeDynamicallocationHost:
kernel<<<grid,block,numBytesShMem>>>(arg);Device(inkernel):
extern__shared__float
s[];44RememberSM=StreamingmultiprocessorSM≠SharedmemoryComputationalIntensityComputationalintensity=FLOPS/IOMatrixmultiplication:n3/n2=nN-bodysimulation:n2/n=n45Ifcomputationalintensityis>1,thensamedatausedinmorethan1computation.Doasfewgloballoadsandasmanysharedloadsaspossible.Registers&LocalMemoryRegistersFastest“memory”possible,about10xfasterthansharedmemoryMoststackvariablesdeclaredinkernelsarestoredinregisters(example:floatx)StaticallyindexedarraysstoredonthestackaresometimesputinregistersLocalMemoryLocalmemoryiseverythingonthestackthatcan’tfitinregistersThescopeoflocalmemoryisjustthethread.Localmemoryisstoredinglobalmemory(muchslowerthanregisters!)46Non-Programmable!CUDAMemoryModelSummaryMemorySpaceManagedbyPhysicalImplementationScopeonGPUScopeonCPULifetimeRegistersCompilerOn-chipPerThreadNotvisibleLifetimeofathreadLocalCompilerDeviceMemoryPerThreadNotvisibleSharedProgrammerOn-chipBlockNotvisibleBlocklifetimeGlobalProgrammerDeviceMemoryAllThreadsRead/WriteApplicationoruntilexplicitlyfreedConstantProgrammerDeviceMemoryAllThreadsRead-onlyRead/WriteTextureProgrammerDeviceMemoryAllThreadsRead-onlyRead/Write47MotivationGPUArchitectureThreewaystoaccelerateapplicationsCUDAProgrammingModelCUDAProgrammingBasicsOutlineCUDAProgrammingBasicParallelProgramminginCUDACSharedMemoryandSynchronizationConstantMemoryandEventsTextureMemoryOutline50ParallelProgramminginCUDACThefirstexample:
SummingVectorsImaginehavingtwolistsofnumberswherewewanttosumcorrespondingelementsofeachlistandstoretheresultinathirdlist.51ParallelProgramminginCUDACCPUcore1CPUcore252ParallelProgramminginCUDAC53ParallelProgramminginCUDAC__host____device__cudaError_tcudaMalloc(void**devPtr,size_tsize)__host__and__device__istypequafiler,whichmeasthisfunctioncanbecalledonthedeviceorthehost.AllcudafunctionstakesaerrorcodeasareturnvalueDifferentfromC’sMallocfunction,thisfunctionstakesapointertopointerasaparameter.54ParallelProgramminginCUDACExecutionconfiguration
<<<Dg,Db,Ns,S>>>Dgisoftypedim3andspecifiesthedimensionandsizeofthegrid,suchthatDg.x*Dg.y*Dg.zequalsthenumberofblocksbeinglaunched;Dbisoftypedim3andspecifiesthedimensionandsizeofeachblock,suchthatDb.x*Db.y*Db.zequalsthenumberofthreadsperblock;Nsistypeofsize_tandspecifiesthenumberofbytesinsharedmemorythatisdynamicallyallocatedperblockforthiscallinadditiontothestaticallyallocatedmemory;It’sanoptionalargumentwhichdefaultto0;SisoftypecudaStream_tandspecifiestheassociatedstream;It’sanoptionalargumentwhichdefaultsto055ParallelProgramminginCUDAC56ParallelProgramminginCUDAC__host__cudaError_tcudaMemcpy(void*dst,constvoid*src,size_t count,cudaMemcpyKindkind)CopiesdatabetweenhostanddevicecudaMemcpyKindspecifiesthedirectionofthecopy.ItisoneofcudaMemcpyHostToHost,cudaMemcpyHostToDevice,cudaMemcpyDeviceToHost,cudaMemcpyDeviceToDevice57ParallelProgramminginCUDAC__global__functionsmushhavevoidreturntype.Anycalltoa__global__functionmustspecifyitsexecutionconfiguration.Acalltoa__global__functionisasynchronous,meaningitreturnsbeforethedevicehascompleteditsexecution.58ParallelProgramminginCUDACblockIdx.xcontainstheblockindexwithinthegridthreadIdx.xcontainsthethreadindexwithintheblockCUDAProgrammingBasicParallelProgramminginCUDACSharedMemoryandSynchronizationConstantMemoryandEventsTextureMemoryOutline60SharedMemoryandSynchronizationThreadswithinablockcancommunicatewitheachotherthroughsharedmemory.__shared__isusedtomakethevariableresidentinsharedmemory.Iftwothreadswanttowritethesamesharedvariable,theremustbeasynchronizationbetweentwothreads.EitherAwritesafterB,orBwritesafterA.Now,let’stakealookatanexamplethatusesthesefeatures61SharedMemoryandSynchronizationDOTPRODUCTEachthreadmultipliesapairofcorrespondingentries,andtheneverythreadmovesontoitsnextpair.Becausetheresultneedstobethesumofallthesepairwiseproducts,eachthreadkeepsarunningsumofthepairsithasadded.62SharedMemoryandSynchronizationSupposewehaveNthreads,andthearraysizeisN*M63SharedMemoryandSynchronization64SharedMemoryandSynchronization65SharedMemoryandSynchronization66SharedMemoryandSynchronization67SharedMemoryandSynchronizationCUDAProgrammingBasicParallelProgramminginCUDACSharedMemoryandSynchronizationConstantMemoryandEventsTextureMemoryOutline69ConstantMemoryandEventsConstantmemoryusedfordatathatwillnotchangeoverthecourseofakernelexecutionNVIDIAhardwareprovides64KBofconstantmemorythatittreatsdifferentlythanittreatsstandardglobalmemory.70ConstantMemoryandEventsProblemDescription:Produceanimageofathree-dimensionalseene.Asimpleidea:Imaginethelightsgothroughtheobjects,andcastashadowontheplate.Sincelightscancomefromanyplaceatanypointinourscene,itturnsourit’seasiertoworkbackward.Eachpixelintheimagewillshootarayintothescene.Wefigureoutwhatcolorisseenbyeachpixelbytracingarayfromthepixelinquestionthroughthesceneuntilithitsoneofourobjects.Wethensaythatthepixelwould“see”thisobjectandcanassignitscolorbasedonthecoloroftheobjectitsees.Mostofthecomputationrequiredbyraytracingisinhecomputationoftheseintersectionsoftheraywiththeobjextsinthescene.71ConstantMemoryandEvents72ConstantMemoryandEventsWhatwilltheraytracerdoItwillfirearayfromeachpixelComputewhichrayshitwhichspheres,andthedepthofeachofthesehits.Inthecasewherearaypassesthroughmultiplespheres,onlythespherefurthesttotheimagecanbeseen.Wewillmodeloursphereswithadatastructurethatstoresthesphere’scentercoordinateof(x,y,z),itsradius,anditscolorof(r,b,g).73ConstantMemoryandEvents74ConstantMemoryandEvents75ConstantMemoryandEvents76ConstantMemoryandEventsConstantmemoryalwaysdeclaredinFilescope(globalvariable)CUDAProgrammingBasicParallelProgramminginCUDACSharedMemoryandSynchronizationConstantMemoryandEventsTextureMemoryOutline78TextureMemoryLikeconstantmemory,texturememoryisAnothervarietyofread-onlymemoryCachedonchip,soitwillprovidhighereffectivebandwidthDesignedforgraphicsapplicationswherememoryaccesspatternsexhibitagreatdealofspatialocality79TextureMemoryspatialocalityInacomputingapplication,thisroughlyimpliesthatathreadislikelytoreadfromanaddress“near”theaddressthatnearbythreadsread,asshowninthefigure.80TextureMemoryForCPUcachingscheme-------->thefouraddressesshownarenotconsecutiveandwouldnotbecached
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业体检项目优化的成本控制策略
- 金华2025年浙江金华磐安县人民检察院司法雇员招录4人笔试历年参考题库附带答案详解
- 连云港2025年江苏连云港东海县卫生健康委员会所属事业单位招聘18人笔试历年参考题库附带答案详解
- 苏州2025年江苏苏州张家港市保税区街道招聘村(社区)工作人员7人笔试历年参考题库附带答案详解
- 眉山2025年四川眉山天府学校招聘事业人员13人笔试历年参考题库附带答案详解
- 温州2025年浙江温州苍南县事业单位招聘工作人员151人笔试历年参考题库附带答案详解
- 泸州2025年四川泸州市龙马潭区招聘教师3人笔试历年参考题库附带答案详解
- 江西2025年江西机电职业技术学院人事代理人员招聘50人笔试历年参考题库附带答案详解
- 日照2025年山东日照市卫生学校招聘工作人员3人笔试历年参考题库附带答案详解
- 怒江云南怒江州司法局招聘公益性岗位笔试历年参考题库附带答案详解
- 2022版义务教育(物理)课程标准(附课标解读)
- 神经外科介入神经放射治疗技术操作规范2023版
- 肺结核患者合并呼吸衰竭的护理查房课件
- 安川XRC机器人CIO培训讲议课件
- 地源热泵施工方案
- 滨海事业单位招聘2023年考试真题及答案解析1
- 热电厂主体设备安装施工组织设计
- CT尿路成像的课件资料
- GB/T 26784-2011建筑构件耐火试验可供选择和附加的试验程序
- PKPM结果分析限值规范要求和调整方法(自动版)
- 煤矿安全规程执行说明
评论
0/150
提交评论