人教版高二下学期数学(选择性必修3)《6.7排列、组合的综合应用》同步测试题含答案_第1页
人教版高二下学期数学(选择性必修3)《6.7排列、组合的综合应用》同步测试题含答案_第2页
人教版高二下学期数学(选择性必修3)《6.7排列、组合的综合应用》同步测试题含答案_第3页
人教版高二下学期数学(选择性必修3)《6.7排列、组合的综合应用》同步测试题含答案_第4页
人教版高二下学期数学(选择性必修3)《6.7排列、组合的综合应用》同步测试题含答案_第5页
已阅读5页,还剩20页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第第页人教版高二下学期数学(选择性必修3)《6.7排列、组合的综合应用》同步测试题含答案考试时间:60分钟;满分:100分学校:___________班级:___________姓名:___________考号:___________1.(2022秋·河南南阳·高二阶段练习)用0、1、2、3四个数字组成没有重复数字的自然数.(1)把这些自然数从小到大排成一个数列,1230是这个数列的第几项?(2)其中的四位数中偶数有多少个?所有这些偶数它们各个数位上的数字之和是多少?2.(2022·全国·高三专题练习)已知有6本不同的书.分成三堆,每堆2本,有多少种不同的分堆方法?3.(2022·高二课时练习)从5名教师中挑选2人,分别担任两个班的班主任,有多少种不同的安排方案?4.(2022春·上海嘉定·高二期末)(1)用1、2、3、4、5可以组成多少个四位数?(2)用0,1,2,3,4,5可以组成多少个没有重复数字的四位偶数?5.(2022·全国·高三专题练习)现有7位同学(分别编号为A,B,C,D,E,F,G)排成一排拍照,若其中A,B,C三人互不相邻,D,E两人也不相邻,而F,G两人必须相邻,求不同的排法总数.6.(2022·高二课时练习)从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.试问:(1)五位数中,两个偶数排在一起的有几个?(2)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)7.(2022·高二单元测试)4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?8.(2022春·江苏宿迁·高二阶段练习)某人设计了一项单人游戏,规则如下:先将一棋子放在如图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为ii=1,2,⋅⋅⋅6,则棋子就按逆时针方向行走i个单位,一直循环下去,则某人抛掷三次骰子后棋子恰好又回到点A9.(2022春·天津河西·高二期中)从1、3、5、7、9这五个数字中任取两个数字,从0、2、4、6这四个数字中任取两个数字.(1)共可组成多少个没有重复数字的四位数?(2)共可组成多少个没有重复数字的四位偶数?10.(2022·全国·高三专题练习)现有编号分别为A,B,C,D,E,F,G的7个不同的小球,将这些小球排成一排(1)若要求A,B,C相邻,则有多少种不同的排法?(2)若要求A排在正中间,且B,C,D各不相邻,则有多少种不同的排法?11.(2023·全国·高二专题练习)设有编号为1、2、3、4、5的5个球和编号为1、2、3、4、5的5个盒子,现将这5个球放入5个盒子内.(1)只有1个盒子空着,共有多少种投放方法?(2)没有1个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(3)每个盒子内投放1球,并且至少有2个球的编号与盒子编号相同,有多少种投放方法?12.(2022·全国·高三专题练习)用0,1,2,3,4这5个数字,可以组成多少个满足下列条件的没有重复数字五位数?(1)偶数:(2)左起第二、四位是奇数的偶数;(3)比21034大的偶数.13.(2022秋·浙江金华·高二阶段练习)从1,3,5,7中任取两个数,从0,2,4,6中任取两个数,组成没有重复数字的四位数.(1)可以组成多少个四位偶数?(2)可以组成多少个两个奇数数字相邻的四位数?(所有结果均用数值表示)14.(2022·全国·高三专题练习)某种产品的加工需要经过A,B,C,D,E,5道工序.(1)如果工序A不能放在最后,那么有多少种加工顺序?(数字作答)(2)如果工序A,B必须相邻,那么有多少种加工顺序?(数字作答)(3)如果工序C,D必须不能相邻,那么有多少种加工顺序?(数字作答)15.(2022·全国·高三专题练习)杭州亚运会将于2022年9月10日至25日举行,相关部门计划将6名志愿者分配到亚运会三个不同的运动场馆做服务工作,每个岗位至少1人.(1)一共有多少种不同的分配方案?(2)若6名志愿者中的甲和乙必须分配在同一个场馆工作,则共有多少种不同的分配方案?16.(2022春·福建三明·高二期中)在班级主题班会活动中,4名男生和3名女生站成一排表演节目:(1)4名男生相邻有多少种不同的站法?(2)从中选出2名男生和2名女生表演分四个不同角色的朗诵,有多少种选派方法?(写出必要的数学式和过程,结果用数字作答)17.(2023·全国·高三专题练习)用0,1,2,3,4五个数字.(1)可以排成多少个不重复的能被2整除的五位数?(2)可以排成多少个四位数?(3)可以排成多少个四位数字的电话号码?18.(2022春·河北衡水·高二阶段练习)为弘扬我国古代的六艺文化,某夏令营主办单位计划利用暑期开设礼乐射御书数六门体验课程.(1)若体验课连续开设六周,每周一门,求其中射不排在第一周,数不排在最后一周的所有可能排法种数;(2)甲、乙、丙、丁、戊五名教师在教这六门课程,每名教师至少任教一门课程,求其中甲不任教数的课程安排方案种数.19.(2022秋·吉林长春·高二考阶段练习)从5名男生和4名女生中选出4人去参加数学竞赛.(1)如果选出的4人中男生、女生各2人,那么有多少种选法?(2)如果男生中的小王和女生中的小红至少有1人入选,那么有多少种选法?(3)如果被选出的4人是甲、乙、丙、丁,将这4人派往2个考点,每个考点至少1人,那么有多少种派送方式?20.(2022春·浙江湖州·高二期中)从0,2,4,6中任取3个数字,从1,3,5中任取2个数字.(1)组成无重复数字的五位数,其中能被10整除的有多少个?(2)一共可组成多少个无重复数字的五位数?(3)组成无重复数字的五位数,其中奇数排在奇数位上的共有多少个?21.(2022春·高二单元测试)班上每个小组有12名同学,现要从每个小组选4名同学代表本组与其他小组进行辩论赛.(1)每个小组有多少种选法?(2)如果还要从选出的同学中指定1名作替补,那么每个小组有多少种选法?(3)如果还要将选出的同学分别指定为第一、二、三、四辩手,那么每个小组有多少种选法?22.(2023·全国·高三专题练习)用0、1、2、3、4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.23.(2022秋·北京昌平·高二期末)有7个人分成两排就座,第一排3人,第二排4人.(1)共有多少种不同的坐法?(2)如果甲和乙都在第二排,共有多少种不同的坐法?(3)如果甲和乙不能坐在每排的两端,共有多少种不同的坐法?24.(2022春·河北唐山·高二阶段练习)有4个编号为1,2,3,4的小球,4个编号为1,2,3,4的盒子,现需把球全部放进盒子里,(最后结果用数字作答)(1)没有空盒子的方法共有多少种?(2)可以有空盒子的方法共有多少种?(3)恰有1个盒子不放球,共有多少种方法?(4)恰有一个小球放入自己编号的盒中,有多少种不同的放法?25.(2022·全国·高三专题练习)3名男生与4名女生,按照下列不同的要求,求不同的方案的方法总数.按要求列出式子,再计算结果,用数字作答.(1)从中选出2名男生和2名女生排成一列;(2)全体站成一排,男生不能站一起;(3)全体站成一排,甲不站排头,也不站排尾.(4)全体站成一排,甲、乙必须站在一起,而丙、丁不能站在一起;26.(2022春·吉林长春·高二阶段练习)一个正方形花圃被分成5份.(1)若给这5个部分种植花,要求相邻两部分种植不同颜色的花,已知现有红、黄、蓝、绿4种颜色不同的花,求有多少种不同的种植方法?(2)若将6个不同的盆栽都摆放入这5个部分,且要求每个部分至少有一个盆栽,问有多少种不同的放法?27.(2022春·江苏无锡·高二期中)如图,四边形ABCD的两条对角线AC,BD相交于O,现用五种颜色(其中一种为红色)对图中四个三角形△ABO,△BCO,△CDO,△ADO进行染色,且每个三角形用一种颜色染.(1)若必须使用红色,求四个三角形△ABO,△BCO,△CDO,△ADO中有且只有一组相邻三角形同色的染色方法的种数;(2)若不使用红色,求四个三角形△ABO,△BCO,△CDO,△ADO中所有相邻三角形都不同色的染色方法的种数.28.(2022秋·吉林长春·高二阶段练习)某学习小组有3个男生和4个女生共7人:(1)将此7人排成一排,男女彼此相间的排法有多少种?(2)将此7人排成一排,男生甲不站最左边,男生乙不站最右边的排法有多少种?(3)从中选出2名男生和2名女生分别承担4种不同的任务,有多少种选派方法?(4)现有7个座位连成一排,仅安排4个女生就座,恰有两个空位相邻的不同坐法共有多少种?29.(2022春·广东广州·高二期中)按下列要求分配6本不同的书,各有多少种不同的分配方式?(1)分成三份,1份1本,1份2本,1份3本;(2)甲、乙、丙三人中,一人得1本,一人得2本,一人得3本;(3)平均分成三份,每份2本;(4)平均分配给甲、乙、丙三人,每人2本;(5)分成三份,1份4本,另外两份每份1本.30.(2022春·河北石家庄·高二阶段练习)(1)如图,从左到右有5个空格.(i)若向这5个格子填入0,1,2,3,4五个数,要求每个数都要用到,且第三个格子不能填0,则一共有多少不同的填法?(ii)若给这5个空格涂上颜色,要求相邻格子不同色,现有红黄蓝3颜色可供使用,问一共有多少不同的涂法?(iii)若向这5个格子放入7个不同的小球,要求每个格子里都有球,问有多少种不同的放法?(2)如图,用四种不同的颜色给三棱柱ABC−A(i)若每个底面的顶点涂色所使用的颜色不相同,则不同的涂色方法共有多少种?(ii)若每条棱的两个端点涂不同的颜色,则不同的涂色方法共有多少种?(注:最终结果均用数字作答)参考答案1.(2022秋·河南南阳·高二阶段练习)用0、1、2、3四个数字组成没有重复数字的自然数.(1)把这些自然数从小到大排成一个数列,1230是这个数列的第几项?(2)其中的四位数中偶数有多少个?所有这些偶数它们各个数位上的数字之和是多少?【解题思路】(1)利用分步乘法计数原理讨论1位自然数、2位自然数、3位自然数、4位自然数的情况即可;(2)利用分步乘法和分类加法计数原理计算即可.【解答过程】(1)1位自然数有C42位自然数有C33位自然数有C34位自然数中小于1230的有“10XX”型A2所以1230是此数列的第4+9+18+3+1=35项.(2)四位数偶数有个位是0和个位是2两种情况,其中个位是0有A33=6所以四位偶数共有10个.它们各个数位上的数字之和为10×0+1+2+32.(2022·全国·高三专题练习)已知有6本不同的书.分成三堆,每堆2本,有多少种不同的分堆方法?【解题思路】根据题意先对6本书进行分组,因为平均分成的组,不管他们的顺序如何,都是一种情况,所以分组后要除以A3【解答过程】6本书平均分成3堆,所以不同的分堆方法的种数为C6故答案为:15.3.(2022·高二课时练习)从5名教师中挑选2人,分别担任两个班的班主任,有多少种不同的安排方案?【解题思路】可分两步走:①从5名教师中挑选2人,②将选中的二人安排到两个班;故利用分步乘法计数原理可得答案﹒【解答过程】可分两步完成:①从5名教师中挑选2人,共C52=10种方法,②将选中的2人安排到两个班,共4.(2022春·上海嘉定·高二期末)(1)用1、2、3、4、5可以组成多少个四位数?(2)用0,1,2,3,4,5可以组成多少个没有重复数字的四位偶数?【解题思路】(1)分数字重复和不重复讨论,根据排列组合计算即可.(2)偶数先确定个位数字为0或2或4,再分三类讨论,最后根据加法计数原理可得结果.【解答过程】解:(1)①若组成的四位数的数字不能重复,则可组成的四位数有:C5②若组成的四位数的数字能重复,则可组成的四位数有:54综上所述,结论是:若组成的四位数的数字不能重复,可组成120个四位数;若组成的四位数的数字能重复,可组成625个四位数.(2)满足偶数按个位数字分成三类:个位是0或2或4,①个位是0的,即需要从1,2,3,4,5这5个数中选出3个分别放在千、百、十位,有C5②个位是2的,千位需要从1,3,4,5这4个数中选出1个有4种选法,从剩下的4个数字中选出2个分别放在百位、十位,有C41⋅③个位是4的,也有48个;综上所述,用0,1,2,3,4,5可以组成没有重复数字的四位偶数有60+48+48=156个.5.(2022·全国·高三专题练习)现有7位同学(分别编号为A,B,C,D,E,F,G)排成一排拍照,若其中A,B,C三人互不相邻,D,E两人也不相邻,而F,G两人必须相邻,求不同的排法总数.【解题思路】先排A,B,C,由A33种,F,G相邻捆绑看整体有【解答过程】因F,G两人必须相邻,所以把F,G看作一个整体有A2又A,B,C三人互不相邻,D,E两人也不相邻,所以把A,B,C排列,有A3(1)当D,E分别插入到A,B,C中间的两个空位时,有A22种排法,再把(2)当D,E分别插入到A,B,C中间的两个空位其中一个和两端空位其中一个时,有C21⋅C2所以共有A26.(2022·高二课时练习)从1到7的7个数字中取两个偶数和三个奇数组成没有重复数字的五位数.试问:(1)五位数中,两个偶数排在一起的有几个?(2)两个偶数不相邻且三个奇数也不相邻的五位数有几个?(所有结果均用数值表示)【解题思路】(1)先从3个偶数抽取2个偶数和从4个奇数中抽取3个奇数,利用捆绑法把两个偶数捆绑在一起,再和另外三个奇数进行全排列;(2)利用插空法,先排两个偶数,再从两个偶数形成的3个间隔中,插入三个奇数,即可得出结果.【解答过程】解:可知从1到7的7个数字中,有3个偶数,4个奇数,(1)五位数中,偶数排在一起的有:C3(2)两个偶数不相邻且三个奇数也不相邻的五位数有:C37.(2022·高二单元测试)4个不同的球,4个不同的盒子,把球全部放入盒内.(1)恰有1个盒不放球,共有几种放法?(2)恰有1个盒内有2个球,共有几种放法?【解题思路】(1)把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理结合排列组合即可求出结果;(2)“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,进而由(1)即可得出答案.【解答过程】(1)为保证“恰有1个盒不放球”,先从4个盒子中任意取出去一个,问题转化为“4个球,3个盒子,每个盒子都要放入球,共有几种放法?”,即把4个球分成2,1,1的三组,然后再从3个盒子中选1个放2个球,其余2个球放在另外2个盒子内,由分步乘法计数原理,共有C4(2)“恰有1个盒内有2个球”,即另外3个盒子放2个球,每个盒子至多放1个球,也即另外3个盒子中恰有一个空盒,因此,“恰有1个盒内有2个球”与“恰有1个盒不放球”是同一件事,所以共有144种放法.8.(2022春·江苏宿迁·高二阶段练习)某人设计了一项单人游戏,规则如下:先将一棋子放在如图所示的正方形ABCD(边长为3个单位)的顶点A处,然后通过掷骰子来确定棋子沿正方形的边按逆时针方向行走的单位,如果掷出的点数为ii=1,2,⋅⋅⋅6,则棋子就按逆时针方向行走i个单位,一直循环下去,则某人抛掷三次骰子后棋子恰好又回到点A【解题思路】先依题意分析知抛掷三次骰子后棋子恰好又回到点A处表示三次骰子的点数之和是12,再计算满足点数之和是12的组合的所有不同结果即可.【解答过程】由题意知正方形ABCD(边长为3个单位)的周长是12个单位,抛掷三次骰子后棋子恰好又回到点A处表示三次骰子的点数之和是12,列举出在点数中三个数字能够使得和为12的有1,5,6;2,4,6;3,4,5;3,3,6;5,5,2;4,4,4,共6种组合.其中1,5,6;2,4,6;3,4,5这三种组合每一种有A33=6种不同的结果,所以有3×6=18种;其中3,3,6;5,5,2这两种组合每一种有C根据分类加法计数原理知,共有18+6+1=25种不同的结果,即某人抛掷三次骰子后棋子恰好又回到点A处的所有不同走法有25种.9.(2022春·天津河西·高二期中)从1、3、5、7、9这五个数字中任取两个数字,从0、2、4、6这四个数字中任取两个数字.(1)共可组成多少个没有重复数字的四位数?(2)共可组成多少个没有重复数字的四位偶数?【解题思路】(1)首先需要讨论四位数含0和不含0的情况,含0时要考虑0不在首位,再利用排列组合进行求解;(2)组成的数为偶数时,个位数字只能时0,2,4,6中的一个,需要讨论含0和不含0的情况,含有0时又分0在个位和0不在个位,再利用排列组合进行求解.【解答过程】(1)当构成的四位数不含0时有C5当构成的四位数含0时有C5故符合条件的四位数共有C5(2)因为组成四位偶数的个位数字只能时0,2,4,6中的一个,当四位偶数不含数字0时,有C5含有数字0时,分为两种,0在个位和0不在个位,有C5故符合条件的四位偶数共有C510.(2022·全国·高三专题练习)现有编号分别为A,B,C,D,E,F,G的7个不同的小球,将这些小球排成一排(1)若要求A,B,C相邻,则有多少种不同的排法?(2)若要求A排在正中间,且B,C,D各不相邻,则有多少种不同的排法?【解题思路】(1)利用“捆绑法”可求;(2)分B,C,D中有1个在A的左侧和有2个在A的左侧讨论求解.【解答过程】(1)把A,B,C看成一个整体与剩余的4个球全排列,则不同的排法有A3(2)A在正中间,所以A的排法只有1种.因为B,C,D互不相邻,所以B,C,D不可能同时在A的左侧或右侧.若B,C,D中有1个在A的左侧,2个在A的右侧且不相邻,则不同的排法有C3若B,C,D中有2个在A的左侧且不相邻,1个在A的右侧,则不同的排法有C3故所求的不同排法有108+108=216(种).11.(2023·全国·高二专题练习)设有编号为1、2、3、4、5的5个球和编号为1、2、3、4、5的5个盒子,现将这5个球放入5个盒子内.(1)只有1个盒子空着,共有多少种投放方法?(2)没有1个盒子空着,但球的编号与盒子编号不全相同,有多少种投放方法?(3)每个盒子内投放1球,并且至少有2个球的编号与盒子编号相同,有多少种投放方法?【解题思路】(1)首先从选出两个球作为一组,再将4组排到4个盒子,按照分步乘法计数原理计算可得;(2)首先将5个球全排列,再减去球的编号与盒子编号全相同的情况,即可得解;(3)分四种情况讨论,按照分类加法计数原理计算可得.【解答过程】(1)解:首先选定两个不同的球,作为一组,选法有C5再将4组排到4个盒子,有A54=120种投放法.∴(2)解:没有一个盒子空着,相当于5个元素排列在5个位置上,有A5而球的编号与盒子编号全相同只有1种,所以没有一个盒子空着,但球的编号与盒子编号不全相同的投法有A5(3)解:满足的情形:第一类,五个球的编号与盒子编号全同的放法:1种;第二类,四个球的编号与盒子编号相同的放法:0种;第三类,三个球的编号与盒子编号相同的放法:C5第四类,两个球的编号与盒子编号相同的放法:2C所以满足条件的放法数为:1+10+20=31种.12.(2022·全国·高三专题练习)用0,1,2,3,4这5个数字,可以组成多少个满足下列条件的没有重复数字五位数?(1)偶数:(2)左起第二、四位是奇数的偶数;(3)比21034大的偶数.【解题思路】(1)先考虑特殊位置、特殊元素,再利用分类加法原理、分步乘法原理进行计算.(2)先考虑特殊位置、特殊元素,再利用分类加法原理、分步乘法原理进行计算.(3)先考虑特殊位置、特殊元素,再利用分类加法原理、分步乘法原理进行计算.【解答过程】(1)末位是0,有A4末位是2或4,有C2故满足条件的五位数共有24+36=60个.(2)法一:可分两类,0是末位数,有A22或4是末位数,则A2故共在4+4=8个.法二:四位从奇数1,3中取,有A2首位从2,4中取,有A21个:余下的排在剩下的两位,有故共有A2(3)法一:可分五类,当末位数是0,而首位数是2时,有A2当末位数字是0,而首位数字是3或4时,有A2当末位数字是2,而首位数字是3或4时,有A2当末位数字是4,而首位数字是2时,有A2当末位数字是4,而首位数字是3吋,有A3故有A2法二:不大于21034的偶数可分为三类:万位数字为1的偶数,有A3万位数字为2,而千位数字是0的偶数,有A2而由0,1,2,3,4组成的五位偶数有A4故满足条件的五位偶数共有60−A13.(2022秋·浙江金华·高二阶段练习)从1,3,5,7中任取两个数,从0,2,4,6中任取两个数,组成没有重复数字的四位数.(1)可以组成多少个四位偶数?(2)可以组成多少个两个奇数数字相邻的四位数?(所有结果均用数值表示)【解题思路】(1)分末位为0和末位为2,4,6分类求解即可;(2)计算所有情况,减去0在首位的情况即可.【解答过程】(1)当0在末位时,共有C4当末位为2,4,6,且0不在首位时,共有3C则可以组成108+288=396个四位偶数.(2)当0在首位时,有C4则两个奇数数字相邻的四位数共有C414.(2022·全国·高三专题练习)某种产品的加工需要经过A,B,C,D,E,5道工序.(1)如果工序A不能放在最后,那么有多少种加工顺序?(数字作答)(2)如果工序A,B必须相邻,那么有多少种加工顺序?(数字作答)(3)如果工序C,D必须不能相邻,那么有多少种加工顺序?(数字作答)【解题思路】(1)先从另外4道工序中任选1道工序放在最后,再将剩余的4道工序全排列即可;(2)先排A,B这2道工序,再将它们看做一个整体,与剩余的工序全排列;(3)先排其余的3道工序,出现4个空位,再将这2道工序插空.【解答过程】(1)先从另外4道工序中任选1道工序放在最后,有C41=4种不同的排法,再将剩余的4道工序全排列,有A(2)先排A,B这2道工序,有A22=2种不同的排法,再将它们看做一个整体,与剩余的工序全排列,有A(3)先排其余的3道工序,有A33=6种不同的排法,出现4个空位,再将C,D这2道工序插空,有A15.(2022·全国·高三专题练习)杭州亚运会将于2022年9月10日至25日举行,相关部门计划将6名志愿者分配到亚运会三个不同的运动场馆做服务工作,每个岗位至少1人.(1)一共有多少种不同的分配方案?(2)若6名志愿者中的甲和乙必须分配在同一个场馆工作,则共有多少种不同的分配方案?【解题思路】(1)根据题意将6名志愿者进行1,1,4,3,2,1,2,2,2分组,分别求出每组的分配方案,再利用分类加法计数原理求解;(2)根据题意将6名志愿者进行1,1,3,2,2,1分组,其中甲和乙必须在一起看作一个整体,再利用分类加法计数原理求解.【解答过程】(1)当分配的人数分别是1人,1人,4人时,共有C6当分配的人数分别是3人,2人,1人时,共有C6当分配的人数分别是2人,2人,2人时,共有C6所以一共有90+360+90=540种不同的分配方案.(2)把甲、乙两人看作一个整体,6个人变成了5个元素,再把这5个元素分成3组,若分配的元素分别是1人,1人,3人时,共有C5若分配的元素分别是2人,2人,1人时,共有C5则有60+90=150种不同的分配方案.16.(2022春·福建三明·高二期中)在班级主题班会活动中,4名男生和3名女生站成一排表演节目:(1)4名男生相邻有多少种不同的站法?(2)从中选出2名男生和2名女生表演分四个不同角色的朗诵,有多少种选派方法?(写出必要的数学式和过程,结果用数字作答)【解题思路】(1)利用捆绑法将4名男生绑在一起再排列即可;(2)先从中选出2名男生和2名女生再排列4人即可.【解答过程】(1)将4名男生绑在一起有A44种,再与3名女生站成一排有(2)从中选出2名男生和2名女生表演分四个不同角色的朗诵,有C417.(2023·全国·高三专题练习)用0,1,2,3,4五个数字.(1)可以排成多少个不重复的能被2整除的五位数?(2)可以排成多少个四位数?(3)可以排成多少个四位数字的电话号码?【解题思路】(1)先考虑能被2整除的数为偶数,则个位数字应在0,2,4中选择,再考虑不重复的五位数字,需注意万位不为0,对个位是否为0分类讨论,进而求解;(2)四位数的要求为千位不为0,求解即可;(3)四位数字的电话号码相对(2)的区别在于首位可为0,进而求解.【解答过程】(1)由题,能被2整除的数为偶数,则个位数字应在0,2,4中选择,需用5个数字组成不重复的五位数,则万位不是0,所以当个位是0时,共有A4当个位不是0时,共有C2所以不重复的且能被2整除的五位数有24+36=60个.(2)要组成一个四位数,则千位不为0,所以共有4×5×5×5=500个.(3)要组成一个四位数字的电话号码,则共有5418.(2022春·河北衡水·高二阶段练习)为弘扬我国古代的六艺文化,某夏令营主办单位计划利用暑期开设礼乐射御书数六门体验课程.(1)若体验课连续开设六周,每周一门,求其中射不排在第一周,数不排在最后一周的所有可能排法种数;(2)甲、乙、丙、丁、戊五名教师在教这六门课程,每名教师至少任教一门课程,求其中甲不任教数的课程安排方案种数.【解题思路】(1)分射排在最后一周时和射不排在最后一周时两种情况讨论求解即可;(2)分甲教两科时和甲教一科时两组情况讨论求解即可.【解答过程】(1)解:分两组情况讨论,①射排在最后一周时,则有A5②当射不排在最后一周,则射有4种排法,数也有4种排法,剩下的4课课程全排列,有4×4⋅A所以,共有120+384=504种不同排法.(2)解:分两种情况讨论;当甲教两科时,则有C5当甲教一科时,则有C5所以,共有240+1200=1440种不同方案.19.(2022秋·吉林长春·高二考阶段练习)从5名男生和4名女生中选出4人去参加数学竞赛.(1)如果选出的4人中男生、女生各2人,那么有多少种选法?(2)如果男生中的小王和女生中的小红至少有1人入选,那么有多少种选法?(3)如果被选出的4人是甲、乙、丙、丁,将这4人派往2个考点,每个考点至少1人,那么有多少种派送方式?【解题思路】(1)用组合知识直接求解;(2)先求出若小王和小红均未入选时的选法,从而求出如果男生中的小王和女生中的小红至少有1人入选时的选法;(3)分两种情况进行求解,再使用分类加法计数原理进行求解.【解答过程】(1)从5名男生中选2名,4名女生中选2人,属于组合问题,C5(2)若小王和小红均未入选,则有C74=35(3)若2个考点派送人数均为2人,则有C4若1个考点派送1人,另1个考点派送3人,则有C420.(2022春·浙江湖州·高二期中)从0,2,4,6中任取3个数字,从1,3,5中任取2个数字.(1)组成无重复数字的五位数,其中能被10整除的有多少个?(2)一共可组成多少个无重复数字的五位数?(3)组成无重复数字的五位数,其中奇数排在奇数位上的共有多少个?【解题思路】(1)根据能被10整除确定个位数字为0,然后从2,4,6中任取2个,从1,3,5中任取2个,再将取出的四个数字作全排列即可得解;(2)按照五位数中是否含0分两类,可求出结果;(3)按照2个奇数排的位置分三类计数,再相加可求出结果.【解答过程】(1)因为被10整除的数的个位必为0,所以先从2,4,6中任取2个,有C32种,从1,3,5中任取2个,有C32种,然后将得到的4个数字在前面四个位置上作全排列,有(2)若五位数中含0,则0不能排在首位,有A41种,然后从2,4,6中任取2个,有C32种,从1,3,5中任取2个,有C3此时,共有A4若五位数中不含0,则从2,4,6中任取3个有C33种,从1,3,5中任取2个有C32种,将取出的5个数字作全排,有综上所述:满足题意的五位数共有864+360=1224个.(3)若2个奇数排在万位和百位上,有A3若2个奇数排在万位和个位上,有A3若2个奇数排在百位和个位上,有A3所以满足题意的五位数共有144+144+108=396个.21.(2022春·高二单元测试)班上每个小组有12名同学,现要从每个小组选4名同学代表本组与其他小组进行辩论赛.(1)每个小组有多少种选法?(2)如果还要从选出的同学中指定1名作替补,那么每个小组有多少种选法?(3)如果还要将选出的同学分别指定为第一、二、三、四辩手,那么每个小组有多少种选法?【解题思路】(1)从12名学生中任选4名即可,(2)先从12名学生中选4名,然后再从这4名学生中选1人,再利用分步乘法原理可求得结果,(3)先从12名学生中选4名,然后对这4名学生进行全排列即可【解答过程】(1)由题意可得每个小组有C12(2)由题意可得先从12名学生中选4名,然后再从这4名学生中选1人,所以由分步乘法原理可得共有C12(3)由题意可得先从12名学生中选4名,然后对这4名学生进行全排列,所以由分步乘法原理可得共有C12422.(2023·全国·高三专题练习)用0、1、2、3、4五个数字:(1)可组成多少个五位数;(2)可组成多少个无重复数字的五位数;(3)可组成多少个无重复数字的且是3的倍数的三位数;(4)可组成多少个无重复数字的五位奇数.【解题思路】四个问题是同一类型题根据已知讨论各个位置上的数字情况,然后利用分步乘法计数原理进行计算即可求解.【解答过程】(1)用0、1、2、3、4五个数字组成五位数,相当于从1、2、3、4四个数字中抽取一个放在万位,有C41种情况,从0、1、2、3、4五个数字中抽取一个放在千位,有C51种情况,从0、1、2、3、4五个数字中抽取一个放在百位,有C5所以可组成C4(2)用0、1、2、3、4五个数字组成无重复数字的五位数,相当于先从1、2、3、4四个数字中抽取一个放在万位,有C41种情况,再把剩下的三个数字和0全排列,有A4(3)无重复数字的3的倍数的三位数组成它的三个数字之和必须是3的倍数,所以三个数字必须是0、1、2或0、2、4或1、2、3或2、3、4,若三个数字是0、1、2,则0不能放在百位,从1和2两个数字中抽取一个放在百位,有C21种情况,再把剩下的一个数字和0全排列,有若三个数字是0、2、4,则0不能放在百位,从2和4两个数字中抽取一个放在百位,有C21种情况,再把剩下的一个数字和0全排列,有若三个数字是1、2、3,则相当于对这三个数字全排列,有A3若三个数字是2、3、4,则相当于对这三个数字全排列,有A3所以根据分类计数原理,共可组成C个无重复数字的且是3的倍数的三位数.(4)由数字0、1、2、3、4五个数字组成无重复数字的五位奇数,则放在个位的数字只能是奇数,所以放在个位数字只能是1或3,所以相当于先从1、3两个数字中抽取一个放在个位,有C21种情况,再从剩下的四个数字中除去0抽取一个放在万位,有C3所以可组成C223.(2022秋·北京昌平·高二期末)有7个人分成两排就座,第一排3人,第二排4人.(1)共有多少种不同的坐法?(2)如果甲和乙都在第二排,共有多少种不同的坐法?(3)如果甲和乙不能坐在每排的两端,共有多少种不同的坐法?【解题思路】(1)前排选3人任意排,后排4人任意排,根据分步计数原理可得.(2)首先从其余5人中选出2人与甲、乙排在第二排,再将其余3人排在第一排,按照分步乘法计数原理计算可得;(3)先将甲、乙安排在除每排的两端外的三个位置中的两个位置,再将其余人全排列,按照分步乘法计数原理计算可得;【解答过程】(1)解:排成两排就座,第一排3人,第二排4人,有A7(2)解:若甲和乙都在第二排,先从其余5人中选出2人有C52种选法,将这两人与甲、乙排在第二排,再将其余3人排在第一排,故一共有(3)解:如甲和乙不能坐在每排的两端,则先将甲、乙安排在除每排的两端外的三个位置中的两个位置,再将其余人全排列即可,故一共有A3224.(2022春·河北唐山·高二阶段练习)有4个编号为1,2,3,4的小球,4个编号为1,2,3,4的盒子,现需把球全部放进盒子里,(最后结果用数字作答)(1)没有空盒子的方法共有多少种?(2)可以有空盒子的方法共有多少种?(3)恰有1个盒子不放球,共有多少种方法?(4)恰有一个小球放入自己编号的盒中,有多少种不同的放法?【解题思路】(1)4个球全放4个盒中,没有空盒则全排列即可求得.(2)有4个球,每个球有4种放法,此时随意放,盒子可以空也可以全用完.(3)恰有一个空盒,说明另外三个盒子都有球,而球共四个,必然有一个盒子中放了两个球.(4)恰有一个小球放入自己编号的盒中,选定从四盒四球中选定标号相同得球和盒,另外三球三盒不能对应共两种.【解答过程】(1)没有空盒子的方法:4个球全放4个盒中,没有空盒则全排列共A4(2)可以有空盒子,有4个球,每个球有4种放法共44(3)恰有一个空盒子,说明另外三个盒子都有球,而球共四个,必然有一个盒子中放了两个球,先将四盒中选一个作为空盒,再将四球中选出两球绑在一起,再排列共C4(4)恰有一个小球放入自己编号的盒中,选定从四盒四球中选定标号相同得球和盒,另外三球三盒不能对应共两种,则共C425.(2022·全国·高三专题练习)3名男生与4名女生,按照下列不同的要求,求不同的方案的方法总数.按要求列出式子,再计算结果,用数字作答.(1)从中选出2名男生和2名女生排成一列;(2)全体站成一排,男生不能站一起;(3)全体站成一排,甲不站排头,也不站排尾.(4)全体站成一排,甲、乙必须站在一起,而丙、丁不能站在一起;【解题思路】(1)从男生中任选2名有C32种选法,从女生中任选2名有(2)先将女生全排列会有5个空,再将男生排列到5个空即可求解;(3)先从除甲外的6个人中选两人排列在收尾,再将剩余的5个人排列到中间即可求解;(4)先将甲乙捆绑有A22种,将甲乙看做一个整体与除丙丁外的剩余3人排列有【解答过程】(1)从3名男生中任选2名有C32种选法,从4名女生中任选2名有C42种选法,再将选取的4人排列有(2)先将女生全排有A44种,再从5个空隙中选出3个将3个男生插入到3个空隙中有A5(3)首尾位置可安排另6人中的两人,有A62种排法,其他人有A5(4)将甲乙捆在一起,与剩下的3人(除丙丁)全排A44,再将丙丁插空到5个空隙中的2个有A52种,再将甲乙交换位置有26.(2022春·吉林长春·高二阶段练习)一个正方形花圃被分成5份.(1)若给这5个部分种植花,要求相邻两部分种植不同颜色的花,已知现有红、黄、蓝、绿4种颜色不同的花,求有多少种不同的种植方法?(2)若将6个不同的盆栽都摆放入这5个部分,且要求每个部分至少有一个盆栽,问有多少种不同的放法?【解题思路】(1)先对E部分种植,再对A部分种植,对C部分种植进行分类:①若与A相同,②若与A不同进行讨论即可;(2)将6个盆栽分成5组,即2-1-1-1-1,将分好的5组全排列即可.【解答过程】(1)先对E部分种植,有4种不同的种植方法;再对A部分种植,又3种不同的种植方法;对C部分种植进行分类:①若与A相同,D有2种不同的种植方法,B有2种不同的种植方法,共有4×3×2×2=48(种),②若与A不同,C有2种不同的种植方法,D有1种不同的种植方法,B有1种不同的种植方法,共有4×3×2×1×1=24(种),综上所述,共有72种种植方法。(2)将6个盆栽分成5组,则2-1-1-1-1,有C6将分好的5组全排列,对应5个部分,则一共有C6综上所述,共有1800种不同的放法。27.(2022春·江苏无锡·高二期中)如图,四边形ABCD的两条对角线AC,BD相交于O,现用五种颜色(其中一种为红色)对图中四个三角形△ABO,△BCO,△CDO,△ADO进行染色,且每个三角形用一种颜色染.(1)若必须使用红色,求四个三角形△ABO,△BCO,△CDO,△ADO中有且只有一组相邻三角形同色的染色方法的种数;(2)若不使用红色,求四个三角形△ABO,△BCO,△CDO,△ADO中所有相邻三角形都不同色的染色方法的种数.【解题思路】(1)根据题意,假设为△ABO,△BCO,同色,再分2种情况讨论:①若△ABO,△BCO,同时染红色与,②若△ABO,△BCO,同时染的不是红色,求出每种情况的染色方法数目,由加法原理计算可得答案;(2)根据题意,分3种情况讨论:①、若一共使用了四种颜色,②、若只使用了三种颜色,则必有一种颜色使用了两次,且染在对顶的区域,③、若只使用了两种颜色,则两种颜色都使用了两次,且各自染在一组对顶区域,求出每种情况的染色方法数目,由加法原理计算可得答案.【解答过程】(1)解:根据题意,要求四个三角形△ABO,△BCO,△CDO,△ADO中有且只有一组相邻三角形同色,而同色的相邻三角形共有4种,不妨假设为△ABO,△BCO同色,①若△ABO,△BCO同时染红色,则另外两个三角形共有A42种染色方法,因此这种情况共有②若△ABO,△BCO同时染的不是红色,则它们的染色有4种,另外两个三角形一个必须染红色,所以这两个三角形共有3×2=6,因此这种情况共有4×6=24种染色方法.综上可知有且只有一组相邻三角形同色的染色方法的种数为4×(12+24)=144种;(2)解:根据题意,因为不用红色,则只有四种颜色可选,分3种情况讨论:①、若一共使用了四种颜色,则共有A4②、若只使用了三种颜色,则必有一种颜色使用了两次,且染在对顶的区域,所以一共有C4③、若只使用了两种颜色,则两种颜色都使用了两次,且各自染在一组对顶区域,所以共有C4综上可知所有相邻三角形都不同色的染色方法的种数为24+4828.(2022秋·吉林长春·高二阶段练习)某学习小组有3个男生和4个女生共7人:(1)将此7人排成一排,男女彼此相间的排法有多少种?(2)将此7人排成一排,男生甲不站最左边,男生乙不站最右边的排法有多少种?(3)从中选出2名男生和2名女生分别承担4种不同的任务,有多少种选派方法?(4)现有7个座位连成一排,仅安排4个女生就座,恰有两个空位相邻的不同坐法共有多少种?【解题思路】(1)利用排列中相间问题插空法及分步乘法计数原理即可求解;(2)利用排列中特殊位置与特殊元素优先处理及分类加法计数原理即可求解;(3)利用排列组合中遵循先选后排及分步乘法计数原理即可求解;(4)利用排列中的相邻问题插空法及分步计数原理即可求解.【解答过程】(1)根据题意,分2步进行分析:①,将3个男生全排列,有A3②,将4名女生全排列,安排到4个空位中,有A4则一共有A3(2)根据题意,分2种情况讨论:①,男生甲在最右边,有A6②,男生甲不站最左边也不在最右边,有A5则有720+3000=3720种排法;(3)根据题意,分2步进行分析:①,在3名男生中选取2名男生,4名

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论