(课件1)31随机事件的概率_第1页
(课件1)31随机事件的概率_第2页
(课件1)31随机事件的概率_第3页
(课件1)31随机事件的概率_第4页
(课件1)31随机事件的概率_第5页
已阅读5页,还剩27页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第三章概率3.1随机事件的概率

相传古代有个国王,由于崇尚迷信,世代沿袭着一条奇特的法规:凡是死囚,在临刑时要抽一次“生死签”,即在两张小纸片上分别写着“生”和“死”的字样,由执法官监督,让犯人当众抽签,如果抽到“死”字的签,则立即处死;如果抽到“生”字的签,则当场赦免.

有一次国王决定处死一个敢于“犯上”的大臣,为了不让这个囚臣得到半点获赦机会,他与几个心腹密谋暗议,暗中叮嘱执法官,把两张纸上都写成“死”.但最后“犯上”的大臣还是获得赦免,你知道他是怎么做的吗?事件一:现阶段地球一定一直在运动吗?事件二:

木柴燃烧一定能产生热量吗?观察下列事件:事件三:事件四:王义夫下一枪一定会中十环吗?一天内,在常温下,这块石头一定会被风化吗?事件五:事件六:扔一块硬币,一定能出现正面吗?在标准大气压下,且温度低于0℃时,这里的雪一定会融化吗?这些事件发生与否,各有什么特点呢?(1)“地球不停地转动”(2)“木柴燃烧,产生能量”(3)“在常温下,石头在一天内风化”(4)“某人射击一次,中靶”(5)“掷一枚硬币,出现正面”(6)“在标准大气压下且温度低于0℃时,雪融化”必然发生必然发生不可能发生不可能发生可能发生也可能不发生可能发生也可能不发生定义:随机事件:在一定条件下可能发生也可能不发生的事件叫随机事件。必然事件:在一定条件下必然要发生的事件叫必然事件。不可能事件:在一定条件下不可能发生的事件叫不可能事件。确定事件和随机事件统称为事件,一般用大写字母A,B,C…表示。这些事件发生与否,各有什么特点呢?(1)“地球不停地转动”(2)“木柴燃烧,产生能量”(3)“在常温下,石头风化”(4)“某人射击一次,中靶”(5)“掷一枚硬币,出现正面”(6)“在标准大气压下且温度低于0℃时,雪融化”必然发生必然发生不可能发生不可能发生可能发生也可能不发生可能发生也可能不发生必然事件必然事件不可能事件随机事件随机事件不可能事件指出下列事件是必然事件,不可能事件,还是随机事件:(1)某地明年1月1日刮西北风;(3)手电筒的电池没电,灯泡发亮;(4)一个电影院某天的上座率超过50%。随机事件必然事件不可能事件随机事件(5)从分别标有1,2,3,4,5,6,7,8,9,10的10张号签中任取一张,得到4号签。随机事件(2)当x是实数时,思考:在下列词语中,那些是刻画必然事件的,那些是刻画不可能事件的,那些是刻画随机事件的?(1)海枯石烂

(2)守株待兔(3)九死一生(4)十拿九稳随机事件随机事件随机事件不可能事件下列试验不能构成事件的是________(填序号).①掷一次硬币;②射击一次;③标准大气压下,水烧至100℃;④摸彩票中头奖.解析:

每一次试验连同它产生的结果叫做事件.①②③只是试验,没有结果,故不叫事件.④既有试验又有结果,故是事件.答案:

①②③随机事件是在一定条件下可能发生也可能不发生的事件。我们用概率度量随机事件发生的可能性大小。随机事件发生的可能性大则随机事件发生的概率大;概率小则随机事件发生的可能性小。我们如何获得随机事件发生的概率?要了解随机事件发生的可能性大小,最直接的方法就是试验。在相同的条件S下重复n次试验,若某一事件A出现的次数为nA,则称nA为事件A出现的频数,那么事件A出现的频率fn(A)等于什么?频率的取值范围是什么?让我们来做一个试验:试验:把一枚硬币抛多次,观察其出现的结果,并记录各结果出现的频数,然后计算各频率。

投掷一枚硬币,出现正面可能性有多大?实验

有人将一枚硬币抛掷5次、50次、500次,各做7遍,观察正面出现的次数及频率.试验序号222521252418272512492562472512622580.40.60.21.00.20.40.80.440.500.420.480.360.540.5020.4980.5120.4940.5240.5160.500.502波动最小随n的增大,频率

f呈现出稳定性12345672315124抛掷次数(n)20484040120002400030000正面朝上次数(m)1061204860191201214984频率(m/n)0.5180.5060.5010.50050.4996历史上曾有人作过抛掷硬币的大量重复实验,结果如下表所示抛掷次数n频率m/n0.512048404012000240003000072088德.摩根蒲丰皮尔逊皮尔逊维尼实验中只出现两种结果,没有其它结果,每一次试验的结果不固定,但只是“正面”、“反面”两种中的一种,且它们出现的频率均接近于0.5,但不相等。(1)在每次实验中可能出现几种实验结果?还有其它实验结果吗?根据实验分别回答下列问题:(2)如果同学们再重复一次上面的试验,汇总结果还会和这次汇总结果一致吗?根据实验分别回答下列问题:在大量重复实验后,随着次数的增加,频率会逐渐稳定在区间[0,1]中的某个常数上。(3)如果允许你做大量重复试验,你认为结果又如何呢?根据实验分别回答下列问题:通过实验,我们可以发觉:事件A的概率:注:(1)频率m/n总在P(A)附近摆动,当n越大时,摆动幅度越小。(2)0≤P(A)≤1不可能事件的概率为0,必然事件为1,随机事件的概率大于0而小于1。(3)大量重复进行同一试验时,随机事件及其概率呈现出规律性。一般地,在大量重复进行同一试验时,事件A发生的频率总是接近于某个常数,在它附近摆动。这个常数叫做事件A的概率,记作P(A)。频率与概率的关系随着试验次数的增加,频率会在概率的附近摆动,并趋于稳定.在实际问题中,若事件的概率未知,常用频率作为它的估计值.频率本身是随机的,在试验前不能确定,做同样次数或不同次数的重复试验得到的事件的频率都可能不同.而概率是一个确定数,是客观存在的,与每次试验无关.(1)联系:(2)区别:概率是频率的稳定值,而频率是概率的近似值。概率反映了随机事件发生的可能性的大小。频率与概率的关系总之:1.下列事件:(1)如果a,b∈R,则a+b=b+a;(2)如果a<b<0,则

(3)我班有一位同学的年龄小于18且大于20;(4)没有水,金鱼能活;其中是必然事件的有().A.(1)(2)B.(1)C.(2)D.(2)(3)A2.随机事件;在n次试验中发生了m次,则().A.0<m<nB.0<n<mC.0≤m≤nD.0≤n≤m3.下列说法正确的是().A.任何事件的概率总是在(0,1)之间B.频率是客观存在的,与试验次数无关C.随着试验次数的增加,频率一般会非常接近概率D.概率是随机的,在试验前不能确定CC4.抛掷100枚质地均匀的硬币,有下列一些说法:①全部出现正面向上是不可能事件;②至少有1枚出现正面向上是必然事件;③出现50枚正面向上50枚正面向下是随机事件,以上说法中正确说法的个数为().A.0个B.1个C.2个D.3个B练习5.某人进行打靶练习,共射击10次,其中有2次中10环,有3次中9环,有4次中8环,有1次未中靶,则此人中靶的概率大约是________,假设此人射击1次,试问中靶的概率约为______,中10环的概率约为_________.0.90.90.2练习6某射击手在同一条件下进行射击,结果如下表所示:射击次数n102050100200500击中靶心次数m9194592178455击中靶心的频率(1)填写表中击中靶心的频率;(2)这个射手射击一次,击中靶心的概率约是什么?0.920.900.950.900.910.89解(2)由于频率稳定在常数0.90,所以这个射手射击一次,击中靶心的概率约是0.90。 小结:概率实际上是频率的科学抽象,求某事件的概率可以通过求该事件的频率而估计。射击次数n102050100200500击中靶心次数m9194592178455击中靶心的频率0.920.900.950.900.910.89某篮球运动员在同一条件下进行投篮练习,结果如下表:投篮次数8101520304050进球次数681217253239进球频率计算表中进球的频率;这位运动员投篮一次,进球的概率约是多少?(3)这位运动员进球的概率是0.8,那么他投10次篮一定能投中8次吗?不一定!概率约是0.80.780.750.800.800.85

0.830.80课堂小结:1、本节课需掌握的知识:①了解必然事件,不可能事件,随机事件的概念

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论