




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第1页(共1页)2025年中考数学一轮复习之相交线与平行线一.选择题(共10小题)1.如图,一束平行于主光轴的光线经凸透镜折射后,与经过主光轴的光线交于焦点F,若∠1=30°,则∠ABF的度数为()A.30° B.120° C.150° D.170°2.如图,小明用一副三角板拼成一幅“帆船图”.∠B=∠E=90°,∠C=30°,∠F=45°,ED∥AB,则∠FDC的度数为()A.60° B.65° C.75° D.80°3.如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法(图中三角形ABC是三角板),其依据是()A.同旁内角互补,两直线平行 B.两直线平行,同旁内角互补 C.同位角相等,两直线平行 D.两直线平行,同位角相等4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1=118°,则∠2的度数为()A.28° B.38° C.26° D.30°5.我市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,∠BCD=60°,∠BAC=50°,当∠MAC为()度时,AM∥BE.A.15 B.65 C.70 D.1156.如图,直线m∥n,点A在直线m上,点B在直线n上,连接AB,过点A作AC⊥AB,交直线n于点C.若∠1=50°,则∠2的度数为()A.30° B.40° C.50° D.60°7.一块含30°角的直角三角板,按如图所示方式放置,顶点A,C分别落在直线a,b上,若直线a∥b,∠1=35°,则∠2的度数是()A.45° B.35° C.30° D.25°8.关于两条平行直线m,n,下列说法正确的是(均发生在同一平面内)()A.若m,n被第三条直线所截,则内错角互补 B.过m,n外一点P作直线l∥m,则l与n一定交于一点 C.对于m,n外的任意一点Q,过Q关于m平行的直线有且仅有一条 D.△ABC被平行直线m所截得线段成比例9.电动曲臂式高空作业车在高空作业时只需一个人就可操作机器连续完成升降、前进、后退、转向等动作,极大地减少了操作人员的数量和劳动强度.如图所示是一辆正在工作的电动曲臂式高空作业车,其中AB∥CD∥EF,BC∥DE.若∠ABC=60°,则∠DEF的度数为()A.100° B.120° C.140° D.160°10.一副三角板ABC和DEF如图所示放置,∠C=∠F=90°,点D在边AC上.若DE∥CB,则∠1的度数为()A.75° B.80° C.82° D.85°二.填空题(共5小题)11.如图,物理实验课上,老师将平行于凸透镜主光轴的红光AB和紫光CD射入同一个凸透镜,折射光线BM、DN交于点O,与主光轴分别交于点F1、F2,由此发现凸透镜的焦点略有偏差.若∠ABM=167°,∠CDN=158°,则∠F1OF2的大小为°.12.如图,∠AOB=90°,∠MON=60°,OM平分∠AOB,ON平分∠BOC,则∠AOC=.13.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是.14.如图,AB∥DE,AB⊥BC,∠1=20°,则∠D=°.15.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠E=22°,∠DCE=114°,则∠BAE的度数是°.三.解答题(共5小题)16.如图1是长方形纸带,∠DEF=28°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠DHF的度数是.17.如图,已知∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=135°,求∠AFG的度数.18.如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面EF,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,∠AOE=∠BNM.(1)求证:OE∥DM;(2)若OE平分∠AOF,∠ODC=30°,求扶手AB与靠背DM的夹角∠ANM的度数.19.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.连接DE,若∠ADE=3∠CDE.(1)若∠AED=60°,求∠CDE的度数;(2)若∠AEB=60°,探究DE与BE的位置关系,并说明理由.20.如图,已知AB∥CD,∠2+∠3=180°,DA平分∠BDC,CE⊥FE于点E,∠1=70°.(1)求证:AD∥CE;(2)求∠FAB的度数.
2025年中考数学一轮复习之相交线与平行线参考答案与试题解析一.选择题(共10小题)1.如图,一束平行于主光轴的光线经凸透镜折射后,与经过主光轴的光线交于焦点F,若∠1=30°,则∠ABF的度数为()A.30° B.120° C.150° D.170°【考点】平行线的性质.【专题】线段、角、相交线与平行线;运算能力.【答案】C【分析】先根据对顶角相等可得∠1=∠OFB=30°,然后利用两直线平行,同旁内角互补进行计算即可解答.【解答】解:∵∠1=30°,∴∠1=∠OFB=30°,∵AB∥OF,∴∠ABF+∠OFB=180°,∴∠ABF=180°﹣∠OFB=150°,故选:C.【点评】本题考查了平行线的性质,根据题目的已知条件并结合图形进行分析是解题的关键.2.如图,小明用一副三角板拼成一幅“帆船图”.∠B=∠E=90°,∠C=30°,∠F=45°,ED∥AB,则∠FDC的度数为()A.60° B.65° C.75° D.80°【考点】平行线的性质;三角形内角和定理.【专题】线段、角、相交线与平行线;运算能力.【答案】C【分析】先利用三角形内角和定理可得∠A=60°,∠EDF=45°,然后利用平行线的性质可得∠A=∠ADE=60°,从而利用平角定义进行计算,即可解答.【解答】解:∵∠B=∠E=90°,∠C=30°,∠F=45°,∴∠A=90°﹣∠C=60°,∠EDF=90°﹣∠F=45°,∵ED∥AB,∴∠A=∠ADE=60°,∴∠FDC=180°﹣∠ADE﹣∠EDF=75°,故选:C.【点评】本题考查了平行线的性质,三角形内角和定理,根据题目的已知条件并结合图形进行分析是解题的关键.3.如图,过直线外一点画已知直线的平行线的方法叫“推平行线”法(图中三角形ABC是三角板),其依据是()A.同旁内角互补,两直线平行 B.两直线平行,同旁内角互补 C.同位角相等,两直线平行 D.两直线平行,同位角相等【考点】平行线的判定.【专题】线段、角、相交线与平行线;推理能力.【答案】C【分析】根据∠1和∠2是三角板中的同一个角,得∠1=∠2,根据平行线的判定,即可.【解答】解:∵∠1=∠2,∴a∥b(同位角相等,两直线平行),∴C正确.故选:C.【点评】本题考查平行线的判定,掌握平行线的判定是解题的关键.4.如图,直线a∥b,直角三角形如图放置,∠DCB=90°,若∠1=118°,则∠2的度数为()A.28° B.38° C.26° D.30°【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【答案】A【分析】由平行线的性质可求得∠ACE=118°,从而可求∠2的度数.【解答】解:如图,∵a∥b,∠1=118°,∴∠BCE=∠1=118°,∵∠DCB=90°,∴∠2=∠BCE﹣∠DCB=28°.故选:A.【点评】本题主要考查平行线的性质,解答的关键是熟记平行线的性质:两直线平行,同位角相等.5.我市为了方便市民绿色出行,推出了共享单车服务.图①是某品牌共享单车放在水平地面的实物图,图②是其示意图,其中AB,CD都与地面l平行,∠BCD=60°,∠BAC=50°,当∠MAC为()度时,AM∥BE.A.15 B.65 C.70 D.115【考点】平行线的判定与性质.【专题】线段、角、相交线与平行线;运算能力.【答案】C【分析】根据已知易得:AB∥CD,然后利用平行线的性质可得∠BCD=∠ABC=60°,再利用三角形内角和定理可得∠ACB=70°,最后根据内错角相等,两直线平行可得当∠MAC=∠ACB=70°时,AM∥BE,即可解答.【解答】解:∵AB∥l,CD∥l,∴AB∥CD,∴∠BCD=∠ABC=60°,∵∠BAC=50°,∴∠ACB=180°﹣∠BAC﹣∠ABC=70°,∴当∠MAC=∠ACB=70°时,AM∥BE,故选:C.【点评】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解题的关键.6.如图,直线m∥n,点A在直线m上,点B在直线n上,连接AB,过点A作AC⊥AB,交直线n于点C.若∠1=50°,则∠2的度数为()A.30° B.40° C.50° D.60°【考点】平行线的性质.【专题】线段、角、相交线与平行线;运算能力.【答案】B【分析】根据平行线的性质可得∠ACB=∠1=50°,进而根据∠BAC=90°,即可求解.【解答】解:∵m∥n,∠1=50°,∴∠ACB=∠1=50°,∵AC⊥AB,∴∠BAC=90°,∴∠2=90°﹣∠ACB=40°,故选:B.【点评】本题考查了平行线的性质,直角三角形的性质,熟练掌握各知识点是解题的关键.7.一块含30°角的直角三角板,按如图所示方式放置,顶点A,C分别落在直线a,b上,若直线a∥b,∠1=35°,则∠2的度数是()A.45° B.35° C.30° D.25°【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【答案】D【分析】先根据题意得出∠1+∠BAC的度数,再由平行线的性质即可得出结论.【解答】解:∵∠1=35°,∴∠1+∠BAC=35°+30°=65°,∵a∥b,∴∠2+∠ACB+∠1+∠BAC=180°,即∠2+90°+35°+30°=180°,∴∠2=25°.故选:D.【点评】本题考查的是平行线的性质,熟知两直线平行,同旁内角互补是解题的关键.8.关于两条平行直线m,n,下列说法正确的是(均发生在同一平面内)()A.若m,n被第三条直线所截,则内错角互补 B.过m,n外一点P作直线l∥m,则l与n一定交于一点 C.对于m,n外的任意一点Q,过Q关于m平行的直线有且仅有一条 D.△ABC被平行直线m所截得线段成比例【考点】平行线的判定与性质;余角和补角;同位角、内错角、同旁内角.【专题】线段、角、相交线与平行线;推理能力.【答案】C【分析】根据平行线的判定和性质定理判断即可.【解答】解:若平行直线m,n被第三条直线所截,则内错角相等,故A错误,不符合题意;过平行直线m,n外一点P作直线l∥m,则l∥n,故B错误,不符合题意;对于平行直线m,n外的任意一点Q,过Q关于m平行的直线有且仅有一条,故C正确,符合题意;△ABC被平行直线m所截得线段成比例,没有指明平行直线m与△ABC的边是平行的,故D错误,不符合题意;故选:C.【点评】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键.9.电动曲臂式高空作业车在高空作业时只需一个人就可操作机器连续完成升降、前进、后退、转向等动作,极大地减少了操作人员的数量和劳动强度.如图所示是一辆正在工作的电动曲臂式高空作业车,其中AB∥CD∥EF,BC∥DE.若∠ABC=60°,则∠DEF的度数为()A.100° B.120° C.140° D.160°【考点】平行线的性质.【专题】线段、角、相交线与平行线;运算能力.【答案】B【分析】先利用两直线平行,内错角相等可得∠ABC=∠C=60°,再利用两直线平行,同旁内角互补可得∠D=120°,然后利用两直线平行,内错角相等可得∠DEF=∠D=120°,即可解答.【解答】解:∵AB∥CD,∴∠ABC=∠C=60°,∵BC∥DE,∴∠D=180°﹣∠C=120°,∵EF∥CD,∴∠DEF=∠D=120°,故选:B.【点评】本题考查了平行线的性质,根据题目的已知条件并结合图形进行分析是解题的关键.10.一副三角板ABC和DEF如图所示放置,∠C=∠F=90°,点D在边AC上.若DE∥CB,则∠1的度数为()A.75° B.80° C.82° D.85°【考点】平行线的性质.【专题】线段、角、相交线与平行线;运算能力.【答案】A【分析】先利用平行线的性质可得∠B=∠DGA=60°,然后利用三角形内角和定理可得∠2=75°,从而利用对顶角相等可得∠1=∠2=75°,即可解答.【解答】解:如图:∵DE∥BC,∴∠B=∠DGA=60°,∵∠FDE=45°,∴∠2=180°﹣∠FDE﹣∠DGA=75°,∴∠1=∠2=75°,故选:A.【点评】本题考查了平行线的性质,根据题目的已知条件并结合图形进行分析是解题的关键.二.填空题(共5小题)11.如图,物理实验课上,老师将平行于凸透镜主光轴的红光AB和紫光CD射入同一个凸透镜,折射光线BM、DN交于点O,与主光轴分别交于点F1、F2,由此发现凸透镜的焦点略有偏差.若∠ABM=167°,∠CDN=158°,则∠F1OF2的大小为145°.【考点】平行线的性质.【专题】线段、角、相交线与平行线;运算能力.【答案】145.【分析】先利用平行线的性质可得∠OF1F2=13°,∠DF2E=22°,然后利用对顶角相等可得∠OF2F1=∠DF2E=22°,从而利用三角形内角和定理进行计算即可解答.【解答】解:如图:∵AB∥F1F2,∴∠OF1F2=180°﹣∠ABO=13°,∵CD∥F1E,∴∠DF2E=180°﹣∠CDF2=22°,∴∠OF2F1=∠DF2E=22°,∴∠F1OF2=180°﹣∠OF1F2﹣∠OF2F1=145°,故答案为:145.【点评】本题考查了平行线的性质,根据题目的已知条件并结合图形进行分析是解题的关键.12.如图,∠AOB=90°,∠MON=60°,OM平分∠AOB,ON平分∠BOC,则∠AOC=120°.【考点】垂线;角平分线的定义.【答案】见试题解答内容【分析】根据角平分线的性质,OM平分∠AOB,得出∠MOB=45°,再根据∠MON=60°,ON平分∠BOC,得出∠BON=15°,进而求出∠AOC=∠AOB+∠BOC的度数.【解答】解:∵∠AOB=90°,OM平分∠AOB,∴∠MOB=45°,∵∠MON=60°,∴∠BON=15°,∵ON平分∠BOC,∴∠NOC=15°,∴∠AOC=∠AOB+∠BOC=90°+30°=120°.故答案为:120°.【点评】此题主要考查了垂线的性质以及角平分线的定义,得出∠BON=15°是解决问题的关键.13.如图,直线a∥b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是30°.【考点】平行线的性质;垂线.【专题】线段、角、相交线与平行线;推理能力.【答案】30°.【分析】先根据平行线的性质,得出∠B=∠2,再根据直角三角形的内角和,求得∠B的度数,即可得出结论.【解答】解:∵直线a∥b,∴∠B=∠2,又∵AC⊥AB,∠1=60°,∴∠B=30°,∴∠2=30°,故答案为:30°.【点评】本题主要考查了平行线的性质,以及直角三角形的性质,解题时注意:两条平行线被第三条直线所截,同位角相等.14.如图,AB∥DE,AB⊥BC,∠1=20°,则∠D=110°.【考点】平行线的性质;垂线.【专题】线段、角、相交线与平行线;运算能力;推理能力.【答案】110.【分析】根据平行线的性质得到∠ABD+∠D=180°,根据垂线的定义得到∠ABC=90°,由∠1=20°求出∠ABD,最后求出∠D的度数.【解答】解:∵AB∥DE,∴∠ABD+∠D=180°,∵AB⊥BC,∴∠ABC=90°,∵∠1=20°,∴∠ABD=∠ABC﹣∠1=90°﹣20°=70°.∴∠D=180°﹣∠ABD=180°﹣70°=110°.故答案为:110.【点评】本题考查了平行线的性质,垂线的定义,熟练掌握平行线的性质是解题的关键.15.小明观察“抖空竹”时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB∥CD,∠E=22°,∠DCE=114°,则∠BAE的度数是92°°.【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【答案】92°.【分析】延长DC交AE于F,由三角形的外角性质得∠CFE=∠DCE﹣∠E=92°,再由平行线的性质得出∠BAE=∠CFE=92°即可.【解答】解:如图,延长DC交AE于F,∵∠DCE=∠E+∠CFE=114°,∴∠CFE=∠DCE﹣∠E=114°﹣22°=92°.∵AB∥CD,∴∠BAE=∠CFE=92°,故答案为:92°.【点评】本题考查了平行线的性质以及三角形的外角性质;熟练掌握平行线的性质和三角形的外角性质是解题的关键.三.解答题(共5小题)16.如图1是长方形纸带,∠DEF=28°,将纸带沿EF折叠成图2,再沿BF折叠成图3,则图3中的∠DHF的度数是84°.【考点】平行线的性质;三角形的外角性质;翻折变换(折叠问题).【专题】线段、角、相交线与平行线;三角形;平移、旋转与对称;推理能力.【答案】84°.【分析】如图2,延长AE到M,由折叠的性质得到:∠MEF=∠DEF=28°,由平行线的性质推出∠EFN=∠MEF=28°,由三角形外角的性质求出∠DNF=∠EFN+∠NEF=56°,如图3,由折叠的性质得到:∠FGH=∠DNC=56°,由三角形外角的性质得到∠DHF=∠GFH+∠FGH=84°.【解答】解:如图2,延长AE到M,由折叠的性质得到:∠MEF=∠DEF=28°,∵AE∥BF,∴∠EFN=∠MEF=28°,∴∠DNF=∠EFN+∠NEF=28°+28°=56°,如图3,由折叠的性质得到:∠FGH=∠DNC=56°,∵∠GFH=28°,∴∠DHF=∠GFH+∠FGH=28°+56°=84°.故答案为:84°.【点评】本题考查平行线的性质,折叠的性质,三角形外角的性质,关键是由折叠的性质得到∠MEF=∠DEF=28°,∠FGH=∠DNC=56°.17.如图,已知∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=135°,求∠AFG的度数.【考点】平行线的判定与性质.【专题】几何图形;线段、角、相交线与平行线;推理能力.【答案】(1)见解答;(2)45°.【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=135°得出∠1=45°,得出∠AFG的度数.【解答】解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=135°,∴∠1=45°,∴∠AFG=90°﹣45°=45°.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.18.如图是一种躺椅及其简化结构示意图,扶手AB与底座CD都平行于地面EF,前支架OE与后支架OF分别与CD交于点G和点D,AB与DM交于点N,∠AOE=∠BNM.(1)求证:OE∥DM;(2)若OE平分∠AOF,∠ODC=30°,求扶手AB与靠背DM的夹角∠ANM的度数.【考点】平行线的判定与性质.【专题】线段、角、相交线与平行线;推理能力.【答案】(1)证明见解答过程;(2)105°.【分析】(1)结合题意,根据对顶角相等推出∠AOE=∠AND,根据“同位角相等,两直线平行”即可得解;(2)根据平行线的性质及角平分线定义求解即可.【解答】(1)证明:∵∠BNM=∠AND,∠AOE=∠BNM,∴∠AOE=∠AND,∴OE∥DM;(2)解:∵AB与底座CD都平行于地面EF,∴AB∥CD,∴∠BOD=∠ODC=30°,∵∠AOF+∠BOD=180°,∴∠AOF=150°,∵OE平分∠AOF,∴∠EOF=12∠AOF=∴∠BOE=∠BOD+∠EOF=105°,∵OE∥DM,∴∠ANM=∠BOE=105°.【点评】本题主要考查了平行线的判定与性质的运用,掌握平行线的判定与性质是解题的关键.19.已知AD∥BC,AB∥CD,E在线段BC延长线上,AE平分∠BAD.连接DE,若∠ADE=3∠CDE.(1)若∠AED=60°,求∠CDE的度数;(2)若∠AEB=60°,探究DE与BE的位置关系,并说明理由.【考点】平行线的性质.【专题】线段、角、相交线与平行线;推理能力.【答案】(1)∠CDE=15°;(2)DE⊥BE,理由见解析.【分析】(1)根据∠ADE=3∠CDE,设∠CDE=x°,\angADE=3x°,∠ADC=2x°,根据平行线的性质得出方程90°﹣x+60°+3x=(2)由∠AEB=60°,AD∥BC,可得∠DAE=∠AEB=60°,再由AE平分∠BAD,可得∠BAD=2∠DAE=120°,由AB∥CD可得∠ADC=180°﹣∠BAD=60°,从而得出∠ADE=32∠ADC=90°,再由AD∥BC,可得∠BED【解答】解:(1)∵∠ADE=3∠CDE,∴设∠CDE=x,∠ADE=3x,即∠ADC=∠ADE﹣∠CDE=2x,∵AB∥CD,∴∠BAD=180°﹣∠ADC=180°﹣2x,∵AE平分∠BAD,∴∠EAD∵AD∥BE,∴∠BEA=∠EAD=90°﹣x,∠ADE+∠BED=180°,又∵∠DEA=60°,∠BEA+∠DEA=∠BED,∴90°﹣x+60°+3x=180°,∴x=15°,∴∠CDE=15°.(2)DE⊥BE,理由如下:∵∠AEB=60°,AD∥BC,∴∠DAE=∠AEB=60°,∵AE平分∠BAD,∴∠BAD=2∠DAE=120°,∵AB∥CD,∴∠ADC=180°﹣∠BAD=60°,∵∠ADE=3∠CDE,∠ADE=∠ADC+∠CDE,∴∠ADE又∵AD∥BC,∴∠BED=180°﹣∠ADE=90°,∴DE⊥BE.【点评】本题考查了平行线的性质和判定的应用,用了方程的思想,能运用平行线的性质和判定进行推理是解此题的关键.20.如图,已知AB∥CD,∠2+∠3=180°,DA平分∠BDC,CE⊥FE于点E,∠1=70°.(1)求证:AD∥CE;(2)求∠FAB的度数.【考点】平行线的判定与性质.【专题】线段、角、相交线与平行线;推理能力.【答案】(1)证明见解答过程;(2)55°.【分析】(1)根据平行线的性质推出∠2=∠ADC,求出∠ADC+∠3=180°,根据平行线的判定推出即可;(2)根据平行线的性质求出∠BDC度数,根据角平分线的定义求出∠2=∠ADC=35°,∠FAD=∠AEC=90°,代入∠FAB=∠FAD﹣∠2求出即可.【解答】(1)证明:∵AB∥CD,∴∠2=∠ADC,∵∠2+∠3=180°,∴∠ADC+∠3=180°,∴AD∥EC;(2)解:∵AB∥CD,∠1=70°,∴∠BDC=∠1=70°,∠2=∠ADC,∵DA平分∠BDC,∴∠ADC=12∠BDC=∴∠2=∠ADC=35°,∵CE⊥FE,∴∠AEC=90°,∵AD∥EC,∴∠FAD=∠AEC=90°,∴∠FAB=∠FAD﹣∠2=90°﹣35°=55°.【点评】本题考查了平行线的性质和判定,角平分线定义的应用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补.
考点卡片1.角平分线的定义(1)角平分线的定义从一个角的顶点出发,把这个角分成相等的两个角的射线叫做这个角的平分线.(2)性质:若OC是∠AOB的平分线则∠AOC=∠BOC=12∠AOB或∠AOB=2∠AOC=2∠(3)平分角的方法有很多,如度量法、折叠法、尺规作图法等,要注意积累,多动手实践.2.余角和补角(1)余角:如果两个角的和等于90°(直角),就说这两个角互为余角.即其中一个角是另一个角的余角.(2)补角:如果两个角的和等于180°(平角),就说这两个角互为补角.即其中一个角是另一个角的补角.(3)性质:等角的补角相等.等角的余角相等.(4)余角和补角计算的应用,常常与等式的性质、等量代换相关联.注意:余角(补角)与这两个角的位置没有关系.不论这两个角在哪儿,只要度数之和满足了定义,则它们就具备相应的关系.3.垂线(1)垂线的定义当两条直线相交所成的四个角中,有一个角是直角时,就说这两条直线互相垂直,其中一条直线叫做另一条直线的垂线,它们的交点叫做垂足.(2)垂线的性质在平面内,过一点有且只有一条直线与已知直线垂直.注意:“有且只有”中,“有”指“存在”,“只有”指“唯一”“过一点”的点在直线上或直线外都可以.4.同位角、内错角、同旁内角(1)同位角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的同侧,并且在第三条直线(截线)的同旁,则这样一对角叫做同位角.(2)内错角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的两旁,则这样一对角叫做内错角.(3)同旁内角:两条直线被第三条直线所截形成的角中,若两个角都在两直线的之间,并且在第三条直线(截线)的同旁,则这样一对角叫做同旁内角.(4)三线八角中的某两个角是不是同位角、内错角或同旁内角,完全由那两个角在图形中的相对位置决定.在复杂的图形中判别三类角时,应从角的两边入手,具有上述关系的角必有两边在同一直线上,此直线即为截线,而另外不在同一直线上的两边,它们所在的直线即为被截的线.同位角的边构成“F“形,内错角的边构成“Z“形,同旁内角的边构成“U”形.5.平行线的判定(1)定理1:两条直
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国秘书试题库及答案
- 西双版纳市重点中学2024-2025学年高二物理第二学期期末复习检测试题含解析
- 云南省云县第一中学2025届高二下数学期末调研试题含解析
- 跨境电商代收代付业务合同
- 财产保全担保合同(继承纠纷执行保障)
- 建设用地拆墙工程安全责任合同
- 体育赛事场地借用及赛事运营服务合同
- 高效智能办公楼租赁及智慧办公解决方案合同
- 装修公司地板购销安装合同(4篇)
- 大学生创业计划书范例(17篇)
- 2024春期国开电大法学本科《国际法》在线形考(形考任务1至5)试题及答案
- TCSAE277-2022《乘用车轮胎冰面抓着性能试验方法》
- 【自考复习资料】05175税收筹划(重点知识汇总)
- 北京市清华附中2024届七年级数学第二学期期末综合测试模拟试题含解析
- 机电设备投标书模板
- 22尊重知识产权课件
- 数独题目高级50题典型题带答案
- 学生学习习惯与学术成功的关联
- 中考英语常考超纲词汇
- 光电效应-课件
- RB/T 089-2022绿色供应链管理体系要求及使用指南
评论
0/150
提交评论