




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2024年北师大版高二数学下册月考试卷943考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共7题,共14分)1、设为虚数单位,则=()A.2B.C.D.2、【题文】已知变量x,y满足约束条件若目标函数取得最大值时的最优解有无穷多组,则点(a,b)的轨迹可能是()
3、【题文】双曲线的焦点在x轴上,两条渐近线方程为则双曲线的离心率为()A.5B.C.D.4、命题“数列{an}前n项和是Sn=An2+Bn+C的形式,则数列{an}为等差数列”的逆命题,否命题,逆否命题这三个命题中,真命题的个数为()A.0B.1C.2D.35、已知正三棱锥P﹣ABC底面边长为6;底边BC在平面α内,绕BC旋转该三棱锥,若某个时刻它在平面α上的正投影是等腰直角三角形,则此三棱锥高的取值范围是()
A.(0,]B.(0,]∪[3]C.(0,]D.(0,]∪[3,]6、(1+3x)n(其中n∈N且n≥6)的展开式中x5与x6的系数相等,则n=()A.6B.7C.8D.97、编号为1,2,3,4,5的5人,入座编号也为1,2,3,4,5的5个座位,至多有2人对号入座的坐法种数为()A.120B.130C.90D.109评卷人得分二、填空题(共5题,共10分)8、【题文】=____.9、【题文】[2014·浙江五校联考]已知sin(+α)=则cos(-2α)的值等于________.10、某城市新修建的一条路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的三盏灯,但两端的灯不能熄灭,也不能相邻的两盏灯,则熄灭灯的方法有____种.11、如图是一个几何体的三视图,则该几何体的体积是______.
12、已知向量=(4,-2,-4),=(6,-3,2),则在方向上的投影是______.评卷人得分三、作图题(共7题,共14分)13、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
14、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)15、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)16、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?
17、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)18、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)19、分别画一个三棱锥和一个四棱台.评卷人得分四、计算题(共2题,共8分)20、解不等式|x﹣2|+|x﹣4|>6.21、解不等式组.评卷人得分五、综合题(共3题,共15分)22、如图,在直角坐标系中,点A,B,C的坐标分别为(-1,0),(3,0),(0,3),过AB,C三点的抛物的对称轴为直线l,D为对称轴l上一动点.
(1)求抛物线的解析式;
(2)求当AD+CD最小时点D的坐标;
(3)以点A为圆心;以AD为半径作⊙A.
①证明:当AD+CD最小时;直线BD与⊙A相切;
②写出直线BD与⊙A相切时,D点的另一个坐标:____.23、(2009•新洲区校级模拟)如图,已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1.这条曲线是函数y=的图象在第一象限的一个分支,点P是这条曲线上任意一点,它的坐标是(a、b),由点P向x轴、y轴所作的垂线PM、PN,垂足是M、N,直线AB分别交PM、PN于点E、F.则AF•BE=____.24、已知Sn为等差数列{an}的前n项和,S6=51,a5=13.参考答案一、选择题(共7题,共14分)1、C【分析】试题分析:利用复数的运算法则,=1-2i-1=-2i.考点:复数的基本运算【解析】【答案】C2、D【分析】【解析】解:由已知可得,可行域内的直线的斜率为说明a,b,同号,所以当b<0,目标函数k=-1/3;当b>0,目标函数k=-1/2然后利用斜率关系,取最大值选D【解析】【答案】D3、C【分析】【解析】略【解析】【答案】C4、C【分析】【解答】解:命题“数列{an}前n项和是Sn=An2+Bn+C的形式,则数列{an}为等差数列”是假命题;
故逆否命题也是假命题;
逆命题“若数列{an}为等差数列,则数列{an}前n项和是Sn=An2+Bn+C的形式”为真命题;
故否命题也是真命题;
故选:C
【分析】根据等差数列的前n项和是Sn=n2+(a1﹣)n的形式,逐一分析原命题的逆命题,否命题,逆否命题的真假,可得答案.5、B【分析】【解答】解:设正三棱锥P﹣ABC的高为h;
在△ABC中,设其中心为O,BC中点为E,则OE=×
当h=时,PE=PB==△PBC为等腰直角三角形,即当△PBC在平面α内时符合;
P不在平面α内时,设p在α内的投影为P',PP'=d,∵△P'BC为等腰直角三角形,故P'E=3⇒PE=>3;
又PE==>3;
∴h2>6,∴h>.
由选项可知B符合;
故选:B.
【分析】利用选择题的特点,借助题中答案的端点值判断,当△PBC在平面α内时,它在平面α上的正投影是等腰直角三角形,再求出P不在平面α内时的部分范围,结合选项得答案.6、B【分析】【解答】解:二项式展开式的通项为Tr+1=3rCnrxr∴展开式中x5与x6的系数分别是35Cn5,36Cn6
∴35Cn5=36Cn6
解得n=7
故选B
【分析】利用二项展开式的通项公式求出二项展开式的通项,求出展开式中x5与x6的系数,列出方程求出n.7、D【分析】解:根据题意;“至多有两人对号入座”包括“没有人对号入座”;“只有一人对号入座”和“只有二人对号入座”三种情况;
分析可得;其对立事件为“至少三人对号入座”,包括“有三人对号入座”与“五人全部对号入座”两种情况,(不存在四人对号入座的情况)
5人坐5个座位,有A55=120种情况;
“有三人对号入座”的情况有C53=10种;
“五人全部对号入座”的情况有1种;
故至多有两人对号入座的情况有120-10-1=109种;
故选:D.
根据题意分析可得;“至多有两人对号入座”的对立为“至少三人对号入座”,包括“有三人对号入座”与“五人全部对号入座”两种情况,先求得5人坐5个座位的情况数目,再分别求得“有三人对号入座”与“五人全部对号入座”的情况数目,进而计算可得答案.
本题考查排列、组合的综合应用,注意要明确事件间的相互关系,利用事件的对立事件的性质解题.【解析】【答案】D二、填空题(共5题,共10分)8、略
【分析】【解析】略【解析】【答案】9、略
【分析】【解析】∵+α+-α=∴sin(+α)=cos(-α)=∴cos(-2α)=cos2(-α)=2cos2(-α)-1=2×()2-1=-【解析】【答案】-10、56【分析】【解答】解:本题使用插空法;先将亮的9盏灯排成一排;
由题意;两端的灯不能熄灭,则有8个符合条件的空位;
进而在8个空位中;任取3个插入熄灭的3盏灯;
有C83=56种方法;
故答案为56.
【分析】根据题意,先将亮的9盏灯排成一排,分析可得有8个符合条件的空位,用插空法,再将插入熄灭的3盏灯插入8个空位,用组合公式分析可得答案.11、略
【分析】解:三视图复原的几何体如图;几何体是:一个底面是等腰直角三角形;
直角边长为高为1的三棱柱,与一个底面是矩形,边长为1和2,高为1的四棱锥;
几何体的体积为:V三棱柱+V四棱锥=+=
故答案为:.
三视图复原的几何体是一个三棱柱与一个四棱锥组成的几何体;结合三视图的数据,求出几何体的体积即可.
本题是基础题,考查三视图与直观图的关系,判断三视图复原几何体的形状是解题的关键,考查空间想象能力,计算能力.【解析】12、略
【分析】解:在方向上的投影===.
故答案为:.
利用在方向上的投影=即可得出.
本题考查了向量投影的计算方法,属于基础题.【解析】三、作图题(共7题,共14分)13、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
14、略
【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.
证明:∵A与A'关于OM对称;A与A″关于ON对称;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根据两点之间线段最短,A'A''为△ABC的最小值.15、略
【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;
这样PA+PB最小;
理由是两点之间,线段最短.16、略
【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;
如图所示;
由对称的性质可知AB′=AC+BC;
根据两点之间线段最短的性质可知;C点即为所求.
17、略
【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.
证明:∵A与A'关于OM对称;A与A″关于ON对称;
∴AB=A'B;AC=A''C;
于是AB+BC+CA=A'B+BC+A''C=A'A'';
根据两点之间线段最短,A'A''为△ABC的最小值.18、略
【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;
这样PA+PB最小;
理由是两点之间,线段最短.19、解:画三棱锥可分三步完成。
第一步:画底面﹣﹣画一个三角形;
第二步:确定顶点﹣﹣在底面外任一点;
第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.
画四棱可分三步完成。
第一步:画一个四棱锥;
第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;
第三步:将多余线段擦去.
【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、计算题(共2题,共8分)20、解:当x<2时;不等式即6﹣2x>6,解得x<0.
当2≤x<4时;不等式即2>6,解得x无解.
当x≥4时;不等式即x﹣6>6,解得x>12.
综上可得,不等式的解集为(﹣∞,0)∪(12,+∞).【分析】【分析】将绝对值不等式的左边去掉绝对值,在每一段上解不等式,最后求它们的并集即可.21、解:由{#mathml#}x+3x+1
{#/mathml#}≤2得:{#mathml#}x−1x+1
{#/mathml#}≥0,解得x<﹣1或x≥1;由x2﹣6x﹣8<0得:3﹣{#mathml#}17
{#/mathml#}<x<3+{#mathml#}17
{#/mathml#},
∴不等式组得解集为(3﹣{#mathml#}17
{#/mathml#},﹣1)∪[1,3+{#mathml#}17
{#/mathml#})【分析】【分析】分别解不等式≤2与x2﹣6x﹣8<0,最后取其交集即可.五、综合题(共3题,共15分)22、略
【分析】【分析】(1)由待定系数法可求得抛物线的解析式.
(2)连接BC;交直线l于点D,根据抛物线对称轴的性质,点B与点A关于直线l对称,∴AD=BD.
∴AD+CD=BD+CD;由“两点之间,线段最短”的原理可知:D在直线BC上AD+CD最短,所以D是直线l与直线BC的交点;
设出直线BC的解析式为y=kx+b;可用待定系数法求得BC直线的解析式,故可求得BC与直线l的交点D的坐标.
(3)由(2)可知,当AD+CD最短时,D在直线BC上,由于已知A,B,C,D四点坐标,根据线段之间的长度,可以求出△ABD是直角三角形,即BC与圆相切.由于AB⊥l,故由垂径定理知及切线长定理知,另一点D与现在的点D关于x轴对称,所以另一点D的坐标为(1,-2).【解析】【解答】解:
(1)设抛物线的解析式为y=a(x+1)(x-3).(1分)
将(0;3)代入上式,得3=a(0+1)(0-3).
解;得a=-1.(2分)∴抛物线的解析式为y=-(x+1)(x-3).
即y=-x2+2x+3.(3分)
(2)连接BC;交直线l于点D.
∵点B与点A关于直线l对称;
∴AD=BD.(4分)
∴AD+CD=BD+CD=BC.
由“两点之间;线段最短”的原理可知:
此时AD+CD最小;点D的位置即为所求.(5分)
设直线BC的解析式为y=kx+b;
由直线BC过点(3;0),(0,3);
得
解这个方程组,得
∴直线BC的解析式为y=-x+3.(6分)
由(1)知:对称轴l为;即x=1.
将x=1代入y=-x+3;得y=-1+3=2.
∴点D的坐标为(1;2).(7分)
说明:用相似三角形或三角函数求点D的坐标也可;答案正确给(2分).
(3)①连接AD.设直线l与x轴的交点记为点E.
由(2)知:当AD+CD最小时;点D的坐标为(1,2).
∴DE=AE=BE=2.
∴∠DAB=∠DBA=45度.(8分)
∴∠ADB=90度.
∴AD⊥BD.
∴BD与⊙A相切.(9分)
②∵另一点D与D(1;2)关于x轴对称;
∴D(1,-2).(11分)23、略
【分析】【分析】根据OA=OB,得到△AOB是等腰直角三角形,则△NBF也是等腰直角三角形,由于P的纵坐标是b,因而F
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025企业租赁合同范本3
- 《通过面部特征洞察健康状况》课件
- 2025家电维修服务合同书
- 2025个体经营者租赁合同范文
- 2025物业房屋租赁合同范本
- 《船舶机械设备解析》课件
- (16)-专题16 小说阅读
- 消防员摘除马蜂窝的方法及处置程序
- 山东石油化工学院《制药工程学科前沿讲座》2023-2024学年第二学期期末试卷
- 上海工商职业技术学院《食品营养与安全》2023-2024学年第二学期期末试卷
- 租赁活动板房协议书
- 管道燃气安全培训课件
- (四调)武汉市2025届高中毕业生四月调研考试 英语试卷(含答案)
- 国网四川省电力公司电网工程设备材料补充信息参考价2025
- 2025年科技节活动小学科普知识竞赛题库及答案(共80题)
- 慢性病管理的护理方法试题及答案
- 2025年高考英语二轮复习热点题型专项训练:完形填空夹叙夹议文(含答案)
- 2025年高级考评员职业技能等级认定考试题(附答案)
- 2024多级AO工艺污水处理技术规程
- 安徽省A10联盟2023-2024学年高一下学期期中数学试卷
- JGJ144-2019外墙外保温工程技术标准
评论
0/150
提交评论