




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
第15讲解直角三角形中的“背靠背”模型【应对方法与策略】【模型展示】【多题一解】一、单选题1.(2020·广东深圳·模拟预测)如图所示,从一热气球的探测器A点,看一栋高楼顶部B点的仰角为30°,看这栋高楼底部C点的俯角为60°,若热气球与高楼的水平距离为30m,则这栋高楼高度是()A.60m B.40m C.30m D.60m二、填空题2.(2022·广西钦州·校考二模)如图,河宽CD为100米,在C处测得对岸A点在C点南偏西30°方向、对岸B点在C点南偏东45°方向,则A、B两点间的距离是_____米.(结果保留根号)3.(2020·内蒙古赤峰·统考中考真题)如图,航拍无人机从A处测得一幢建筑物顶部C的仰角是30°,测得底部B的俯角是60°,此时无人机与该建筑物的水平距离AD是9米,那么该建筑物的高度BC为__________米(结果保留根号).4.(2020·湖北咸宁·中考真题)如图,海上有一灯塔P,位于小岛A北偏东60°方向上,一艘轮船从北小岛A出发,由西向东航行到达B处,这时测得灯塔P在北偏东30°方向上,如果轮船不改变航向继续向东航行,当轮船到达灯塔P的正南方,此时轮船与灯塔P的距离是________.(结果保留一位小数,)5.(2020·四川乐山·中考真题)如图是某商场营业大厅自动扶梯示意图.自动扶梯的倾斜角为,在自动扶梯下方地面处测得扶梯顶端的仰角为,、之间的距离为4.则自动扶梯的垂直高度=_________.(结果保留根号)三、解答题6.(2021·湖南永州·统考中考真题)已知锐角中,角A,B,C的对边分别为a,b,c,边角总满足关系式:.(1)如图1,若,求b的值;(2)某公园准备在园内一个锐角三角形水池中建一座小型景观桥(如图2所示),若米,米,,求景观桥的长度.7.(2020·湖北黄石·中考真题)如图,是某小区的甲、乙两栋住宅楼,小丽站在甲栋楼房的楼顶,测量对面的乙栋楼房的高度,已知甲栋楼房与乙栋楼房的水平距离米,小丽在甲栋楼房顶部B点,测得乙栋楼房顶部D点的仰角是,底部C点的俯角是,求乙栋楼房的高度(结果保留根号).8.(2021·云南·统考模拟预测)如图,我市计划在某工业园区内,为相距4千米的彩印公司、包装公司修一条笔直的公路.点P表示住宅小区,在彩印公司北偏东方向与包装公司北偏西方向的交点,住宅小区在以P为圆心,0.8千米为半径的范围内,问这条公路是否会穿越这个住宅小区?(参考数据:,)9.(2021·甘肃武威·统考中考真题)如图1是平凉市地标建筑“大明宝塔”,始建于明嘉靖十四年(1535年),是明代平凉韩王府延恩寺的主体建筑.宝塔建造工艺精湛,与崆峒山的凌空塔遥相呼应,被誉为平凉古塔“双璧”.某数学兴趣小组开展了测量“大明宝塔的高度”的实践活动,具体过程如下:方案设计:如图2,宝塔垂直于地面,在地面上选取两处分别测得和的度数(在同一条直线上).数据收集:通过实地测量:地面上两点的距离为.问题解决:求宝塔的高度(结果保留一位小数).参考数据:,.根据上述方案及数据,请你完成求解过程.10.(2022秋·上海青浦·九年级校考期末)如图,在港口A的南偏东37°方向的海面上,有一巡逻艇B,A、B相距20海里,这时在巡逻艇的正北方向及港口A的北偏东67°方向上,有一渔船C发生故障.得知这一情况后,巡逻艇以25海里/小时的速度前往救援,问巡逻艇能否在1小时内到达渔船C处?(参考数据:,,,,,)11.(2022·甘肃·统考一模)热气球的探测器显示,从热气球看一栋高楼顶部的仰角为,看这栋高楼底部的俯角为,热气球与高楼的水平距离为66m,这栋高楼有多高?(结果精确到0.1m,参考数据:)12.(2022·湖北恩施·二模)某校九年级数学兴趣小组的学生进行社会实践活动时,想利用所学的解直角三角形的知识测量教学楼的高度,他们先在点D处用测角仪测得楼顶M的仰角为30°,再沿DF方向前行40米到达点E处,在点E处测得楼项M的仰角为45°,已知测角仪的高AD为1.5米.请根据他们的测量数据求此楼MF的高.(结果精到0.1m,参考数据:≈1.414,≈1.732,≈2.449)13.(2021·辽宁盘锦·统考二模)一滑板运动场斜坡上的点处竖直立着一个旗杆,旗杆在其点处折断,旗杆顶部落在斜坡上的点处,米,折断部分与斜坡的夹角为75°,斜坡与水平地面的夹角为30°,求旗杆的高度.(,,精确到1米).14.(2020·广东深圳·校考二模)一艘轮船向正东方向航行,在A处测得灯塔P在A的北偏东60°方向,航行40海里到达B处,此时测得灯塔P在B的北偏东15°方向上.(1)求灯塔P到轮船航线的距离PD是多少海里?(结果保留根号)(2)当轮船从B处继续向东航行时,一艘快艇从灯塔P处同时前往D处,尽管快艇速度是轮船速度的2倍,但快艇还是比轮船晚15分钟到达D处,求轮船每小时航行多少海里?(结果保留根号)15.(2020·湖南永州·中考真题)一艘渔船从位于A海岛北偏东60°方向,距A海岛60海里的B处出发,以每小时30海里的速度沿正南方向航行.已知在A海岛周围50海里水域内有暗礁.(参考数据:)(1)这艘渔船在航行过程中是否有触礁的危险?请说明理由.(2)渔船航行3小时后到达C处,求A,C之间的距离.16.(2020·内蒙古通辽·中考真题)从A处看一栋楼顶部的仰角为,看这栋楼底部的俯角为,A处与楼的水平距离为,若,求这栋楼高.17.(2020·湖北恩施·中考真题)如图,一艘轮船以每小时30海里的速度自东向西航行,在处测得小岛位于其西北方向(北偏西方向),2小时后轮船到达处,在处测得小岛位于其北偏东方向.求此时船与小岛的距离(结果保留整数,参考数据:,).18.(2020·江苏淮安·统考中考真题)如图,三条笔直公路两两相交,交点分别为、、,测得,,千米,求、两点间的距离.(参考数据:,,结果精确到1千米).19.(2020·山东潍坊·中考真题)某校“综合与实践”小组采用无人机辅助的方法测量一座桥的长度.如图,桥是水平并且笔直的,测量过程中,小组成员遥控无人机飞到桥的上方120米的点C处悬停,此时测得桥两端A,B两点的俯角分别为60°和45°,求桥的长度.20.(2020·甘肃金昌·统考中考真题)图①是甘肃省博物馆的镇馆之宝——铜奔马,又称“马踏飞燕”,于1969年10月出土于武威市的雷台汉墓,1983年10月被国家旅游局确定为中国旅游标志,在很多旅游城市的广场上都有“马踏飞燕”雕塑,某学习小组把测量本城市广场的“马踏飞燕”雕塑(图②)最高点离地面的高度作为一次课题活动,同学们制定了测量方案,并完成了实地测量,测得结果如下表:课题测量“马踏飞燕”雕塑最高点离地面的高度测量示意图如图,雕塑的最高点到地面的高度为,在测点用仪器测得点的仰角为,前进一段距离到达测点,再用该仪器测得点的仰角为,且点,,,,,均在同一竖直平面内,点,,在同一条直线上.测量数据的度数的度数的长度仪器()的高度5米米请你根据上表中的测量数据,帮助该小组求出“马踏飞燕”雕塑最高点离地面的高度(结果保留一位小数).(参考数据:,,,,,)21.(2020·湖南岳阳·统考中考真题)共抓长江大保护,建设水墨丹青新岳阳,推进市中心城区污水系统综合治理项目,需要从如图,两地向地新建,两条笔直的污水收集管道,现测得地在地北偏东方向上,在地北偏西方向上,的距离为,求新建管道的总长度.(结果精确到,,,,)22.(2020·四川成都·统考中考真题)成都“339”电视塔作为成都市地标性建筑之一,现已成为外地游客到成都旅游打卡的网红地.如图,为测量电视塔观景台处的高度,某数学兴趣小组在电视塔附近一建筑物楼顶处测得塔处的仰角为45°,塔底部处的俯角为22°.已知建筑物的高约为61米,请计算观景台的高的值.(结果精确到1米;参考数据:,,)23.(2021·四川阿坝·统考中考真题)热气球的探测器显示,从热气球A处看大楼BC顶部C的仰角为30°,看大楼底部B的俯角为45°,热气球与该楼的水平距离AD为60米,求大楼BC的高度.(结果精确到1米,参考数据:)24.(2020·江苏苏州·统考中考真题)问题1:如图①,在四边形中,,是上一点,,.求证:.问题2:如图②,在四边形中,,是上一点,,.求的值.25.(2020·四川遂宁·统考中考真题)在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)26.(2023秋·山东济南·九年级期末)从2019年底以来,新冠疫情一直困扰着我们的日常生活,今年为进一步加强疫情防控工作,某公司决定安装红外线体温检测仪,这种设备的原理是采用非接触式测温法,只要用红外体温测试仪的镜头对准被测对象进行扫描,其体温就可立刻在显示屏上显示出来,从而有效地避免了其他常规测温法所可能造成的交叉感染,测温区域示意图如图所示,已知最大探测角∠PAO=75°,最小探测角∠PBO=30°.(参考数据:=1.414,=1.732,=2.236)(1)若该设备安装在离水平地面距离为2.2m的P处,即OP=2.2m,请求出图中OB的长度;(结果精确到0.1m)(2)若该公司要求测温区域AB的长度为4m,请求出该设备的安装高度OP的高度.(结果精确到0.1m)27.(2021·湖北武汉·统考一模)【问题背景】如图1,在△ABC中,点D在边BC上且满足∠BAD=∠ACB,求证:BA2=BD•BC;【尝试应用】如图2,在△ABC中,点D在边BC上且满足∠BAD=∠ACB,点E在边AB上,点G在AB的延长线上,延长ED交CG于点F,若3AD=2AC,BE=ED,BG=2,DF=1,求BE的长度;【拓展创新】如图3,在△ABC中,点D在边BC上(AB≠AD)且满足∠ACB=2∠BAD,D
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论