海南政法职业学院《商业美术插图》2023-2024学年第一学期期末试卷_第1页
海南政法职业学院《商业美术插图》2023-2024学年第一学期期末试卷_第2页
海南政法职业学院《商业美术插图》2023-2024学年第一学期期末试卷_第3页
海南政法职业学院《商业美术插图》2023-2024学年第一学期期末试卷_第4页
海南政法职业学院《商业美术插图》2023-2024学年第一学期期末试卷_第5页
已阅读5页,还剩1页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

自觉遵守考场纪律如考试作弊此答卷无效密自觉遵守考场纪律如考试作弊此答卷无效密封线第1页,共3页海南政法职业学院《商业美术插图》

2023-2024学年第一学期期末试卷院(系)_______班级_______学号_______姓名_______题号一二三四总分得分批阅人一、单选题(本大题共20个小题,每小题2分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1、在计算机视觉的图像配准任务中,将不同视角或时间拍摄的图像进行对齐,以下哪种变换模型可能适用于具有较大形变的图像配准?()A.刚性变换B.仿射变换C.投影变换D.非线性变换2、在计算机视觉的图像特征提取中,假设要提取对光照、旋转和缩放具有不变性的特征。以下关于特征提取方法的描述,正确的是:()A.SIFT特征具有良好的不变性,但计算复杂度高,实时性差B.HOG特征对光照变化适应性强,但对旋转和缩放较敏感C.LBP特征能够快速提取,但特征表达能力有限D.没有一种特征提取方法能够同时满足对光照、旋转和缩放的不变性要求3、计算机视觉在无人驾驶中的应用需要对周围环境进行快速准确的感知。假设车辆要在复杂的城市道路环境中行驶,以下哪种传感器的数据融合可能对提高环境感知的可靠性至关重要?()A.摄像头与激光雷达B.摄像头与毫米波雷达C.激光雷达与超声波传感器D.以上都有可能4、在计算机视觉的特征提取中,SIFT(Scale-InvariantFeatureTransform,尺度不变特征变换)特征是一种经典的方法。假设我们要对一组包含不同视角和缩放比例的物体图像进行匹配,SIFT特征的哪个特性使其在这种情况下表现出色?()A.对旋转和尺度变化具有不变性B.计算速度快,效率高C.特征维度低,易于存储和处理D.对光照变化不敏感5、计算机视觉在无人驾驶中的应用需要应对各种复杂的环境和情况。假设无人驾驶汽车要在恶劣天气下行驶,以下关于计算机视觉在无人驾驶中的挑战的描述,哪一项是不正确的?()A.恶劣天气会影响图像的质量和清晰度,增加目标检测和识别的难度B.计算机视觉系统需要与其他传感器(如雷达和超声波传感器)融合,以提高在恶劣天气下的感知能力C.深度学习模型在恶劣天气条件下的性能会显著下降,无法正常工作D.针对恶劣天气,可以通过数据增强和模型优化等方法提高计算机视觉系统的鲁棒性6、在计算机视觉的应用中,人脸识别技术受到广泛关注。假设一个人脸识别系统正在进行身份验证,以下关于人脸识别的描述,正确的是:()A.只依靠面部的几何形状信息就能实现准确的人脸识别B.光照变化和面部表情对人脸识别的准确率没有影响C.结合深度学习模型和多模态信息,如红外图像,可以提高人脸识别的性能和可靠性D.人脸识别系统不需要考虑数据的隐私和安全问题7、在计算机视觉的视觉跟踪任务中,目标在运动过程中可能会发生形变、遮挡和光照变化等情况。为了提高跟踪的稳定性和准确性,以下哪种策略可能是有效的?()A.模型更新机制B.多特征融合C.抗遮挡处理D.以上都是8、在计算机视觉的视频分析中,假设要对一段监控视频中的异常行为进行检测。以下关于特征提取的方法,哪一项是不太适合的?()A.提取每一帧图像的颜色、纹理等低级特征B.利用光流信息来捕捉物体的运动特征C.仅分析视频的音频信息,忽略图像内容D.结合时空特征,同时考虑空间和时间维度的信息9、在计算机视觉的医学图像分析中,例如对肿瘤的检测和分割。假设医学图像的质量较差,存在噪声和伪影,以下哪种预处理方法可能有助于提高后续分析的准确性?()A.图像平滑B.图像锐化C.图像二值化D.图像翻转10、计算机视觉中的图像分割任务旨在将图像分割成不同的区域。假设要对一张风景图片进行分割,区分天空、陆地和水面。以下关于图像分割方法的描述,哪一项是错误的?()A.基于阈值的分割方法简单快速,但对于复杂图像效果不佳B.区域生长法从种子点开始,逐步合并相似的区域C.深度学习中的全卷积网络(FCN)在图像分割中表现出色,能够生成精确的分割结果D.图像分割的结果总是清晰明确,不存在模糊或错误的边界11、计算机视觉中的目标跟踪是指在视频序列中持续跟踪特定目标。假设要跟踪一个在复杂场景中运动的人物,以下关于目标跟踪算法的描述,正确的是:()A.基于卡尔曼滤波的跟踪算法能够准确预测目标的运动轨迹,但对目标外观变化适应性差B.基于粒子滤波的跟踪算法计算复杂度低,适用于实时跟踪要求高的场景C.基于深度学习的跟踪算法需要大量的训练数据,并且在目标被遮挡时容易丢失D.目标跟踪算法只要在初始帧中准确检测到目标,就能够在后续帧中一直保持跟踪的准确性12、计算机视觉中的场景文本识别旨在从图像中识别出文字信息。假设要在一张街景图像中识别出店铺招牌上的文字。以下关于场景文本识别方法的描述,正确的是:()A.基于光学字符识别(OCR)技术的方法对字体和排版的变化适应性强,识别准确率高B.深度学习中的端到端文本识别模型能够处理弯曲和变形的文本,但对模糊文本效果不佳C.场景文本识别只需要关注文本的内容,不需要考虑文本的位置和上下文信息D.所有的场景文本识别方法都能够在复杂的自然场景中准确无误地识别出各种文字13、假设要构建一个能够对服装进行款式和颜色识别的计算机视觉系统,用于时尚推荐和库存管理。在处理服装图像时,由于服装的款式和颜色变化多样,以下哪种特征表示方法可能更适合?()A.手工设计的特征B.基于深度学习的自动特征C.颜色直方图D.以上都是14、在计算机视觉的图像质量评估任务中,假设要评估一张经过处理后的图像的质量。以下关于图像质量评估方法的描述,正确的是:()A.主观评估方法通过人的观察和判断来评价图像质量,结果准确可靠B.客观评估方法中的全参考方法需要原始未失真图像作为参考,计算复杂度低C.无参考图像质量评估方法能够在没有原始图像的情况下准确评估图像质量D.所有的图像质量评估方法都能够完全反映人对图像质量的主观感受15、计算机视觉中的全景图像拼接是将多个视角的图像组合成一个全景图像。假设我们有一组用普通相机拍摄的场景照片,要拼接成一个无缝的全景图,以下哪个步骤对于拼接的质量影响最大?()A.特征点提取和匹配B.图像融合和过渡处理C.相机参数估计和校正D.图像的裁剪和缩放16、在计算机视觉中,特征提取是非常关键的一步。假设我们要对一组风景图像进行特征提取,以便后续的图像检索和分类任务。以下哪种特征提取方法能够捕捉到图像的全局和局部特征,并且对图像的旋转、缩放等变换具有较好的不变性?()A.尺度不变特征变换(SIFT)B.方向梯度直方图(HOG)C.局部二值模式(LBP)D.卷积神经网络自动学习的特征17、在计算机视觉的车牌识别任务中,假设要从不同角度和光照条件下拍摄的车辆图像中准确识别出车牌号码。以下哪种技术可能有助于提高识别准确率?()A.字符分割和单独识别B.利用深度学习模型进行端到端的识别C.只关注车牌的颜色特征D.随机猜测车牌号码18、在计算机视觉的图像配准任务中,假设要将两张拍摄角度不同的同一物体的图像进行对齐。以下关于特征匹配的方法,哪一项是不太可靠的?()A.使用SIFT(Scale-InvariantFeatureTransform)特征进行匹配B.基于像素值的直接比较进行匹配C.利用SURF(SpeededUpRobustFeatures)特征进行匹配D.通过ORB(OrientedFASTandRotatedBRIEF)特征进行匹配19、计算机视觉中的视频理解不仅包括对单个帧的分析,还需要考虑帧之间的关系。假设我们要理解一个电影片段的情节和情感,以下哪种方法能够有效地捕捉视频中的时空动态信息和语义信息?()A.基于帧级特征和分类器的方法B.基于深度学习的视频理解模型,结合注意力机制C.基于光流和运动轨迹的方法D.基于音频和视频融合的方法20、对于图像的超分辨率重建任务,假设要将一张低分辨率的图像恢复为高分辨率图像,同时保留图像的细节和清晰度。这张低分辨率图像可能存在模糊和失真。以下哪种方法在处理这种情况时可能表现更好?()A.基于插值的方法,如双线性插值和双三次插值B.基于深度学习的超分辨率重建模型,如SRCNNC.对低分辨率图像进行简单的锐化处理D.不进行任何处理,直接使用低分辨率图像二、简答题(本大题共3个小题,共15分)1、(本题5分)说明计算机视觉在旅游行业中的景点推荐和游客行为分析。2、(本题5分)简述计算机视觉在陶瓷生产中的缺陷检测。3、(本题5分)解释计算机视觉在保险理赔中的应用。三、分析题(本大题共5个小题,共25分)1、(本题5分)研究某企业的年度报告设计,探讨其在数据可视化、排版设计和色彩选择方面的创新与不足。2、(本题5分)研究某艺术学院的毕业作品展海报设计,分析其作品展示、展览信息、艺术氛围如何吸引观众参观。3、(本题5分)一家艺术培训机构的宣传海报设计充满艺术气息,展示课程特色。请剖析海报设计在吸引学员报名、传达教学理念、提升品牌知名度方面的策略和作用,以及如何根据不同艺术课程进行个性化设计。4、(本

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论