2024年中考数学二次函数压轴题:面积定值问题_第1页
2024年中考数学二次函数压轴题:面积定值问题_第2页
2024年中考数学二次函数压轴题:面积定值问题_第3页
2024年中考数学二次函数压轴题:面积定值问题_第4页
2024年中考数学二次函数压轴题:面积定值问题_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

专题04面积定值问题

一、知识导航

二、典例精析

如图,抛物线y=-d+2x+3与无轴交于A、B两点、(点A在点8左侧),与y轴交于点C,连接BC,抛物

线在线段2C上方部分取一点P,连接尸8、PC,若△P2C面积为3,求点P坐标.

思路1:铅垂法列方程解.

根据8、C两点坐标得直线BC解析式:y=-x+3,

设点P坐标为^m,—m2+2〃z+3),

过点P作PQy_x轴交于点。,

则点Q坐标为(m,-m+3),

PQ=加?+2m+3)—(一〃?+3)|=|—m2+3m|,

2

SPBC=—x3x|—m+3词=3,

分类讨论去绝对值解方程即可得相的值.

思路2:构造等积变形

同底等高三角形面积相等.

取8C作水平宽可知水平宽为3,根据△PBC面积为3,

可知铅垂高为2,

在y轴上取点Q使得C0=2,过点Q作BC的平行线,

交点即为满足条件的尸点.

当点。坐标为(0,5)时,解析式为:y=-x+5,

耳关五方:—x~+2x+3=—x+5,解即可.

当点。坐标为(0,1)时,解析式为:y=-x+\,

联立方程:-x2+2x+3=-x+],解之即可.

在平面直角坐标系中,直线y=尤+2与x轴交于点A,与y轴交于点3,抛物线y-ax2+bx+c(。<0)经过

点A、B.

(1)求a、6满足的关系式及c的值.

(2)如图,当。=-1时,在抛物线上是否存在点P,使的面积为1?若存在,请求出符合条件的所

有点P的坐标;若不存在,请说明理由.

【分析】

(1)点A坐标为(-2,0),点B坐标为(0,2),

代入解析式可得:c=2,4a-2b+2=0

(2)考虑A、B水平距离为2,△B43的面积为1,故对应的铅垂高为1.

当〃二-1时,可得Z?=-l,抛物线解析式为y=-x2_%+2.

取点。(0,3)作A5的平行线,其解析式为:y=x+3,

联立方程-X2-%+2=X+3,解得X=1,故点《坐标为(-1,2)

取点。(0,1)作A3的平行线,其解析式为:y=x+l,

联立方程-12-%+2=%+1,解得X]=—1+,%2=—1—.

三、中考真题演练

1.(2023•浙江湖州•中考真题)如图1,在平面直角坐标系xOy中,二次函数y=Y-4x+c的图象与y轴的

交点坐标为(0,5),图象的顶点为矩形ABCD的顶点。与原点。重合,顶点A,C分别在x轴,y轴上,

(2)如图2,将矩形ABC。沿无轴正方向平移f个单位(0</<3)得到对应的矩形AB'C'D.已知边C'。',A!B'

分别与函数y=--4x+c的图象交于点P,Q,连接尸2,过点尸作PGLAF于点G.

①当r=2时,求QG的长;

②当点G与点。不重合时,是否存在这样的f,使得△2质的面积为1?若存在,求出此时f的值;若不存

在,请说明理由.

【分析】(1)把(0,5)代入抛物线的解析式即可求出C,把抛物线转化为顶点式即可求出顶点坐标;

(2)①先判断当,=2时,〃,A的坐标分别是(2,0),(3,0),再求出x=3,x=2时点。的纵坐标与点P

的纵坐标,进而求解;

②先求出。G=2,易得P,。的坐标分别是。,产-47+5),。+1,r-2/+2),然后分点G在点。的上方与点

G在点。的下方两种情况,结合函数图象求解即可.

【详解】(1)二•二次函数y=f-4x+c的图象与y轴的交点坐标为(0,5),

••c=5,

«•y—x~~4x+5=(x—2)+1,

顶点M的坐标是(2,1).

(2)①在无轴上,8的坐标为(1,5),

•••点A的坐标是(1,0).

当t=2时,Dfi,A的坐标分别是(2,0),(3,0).

当x=3时,y=(3-2『+1=2,即点。的纵坐标是2,

当x=2时,y={2-2)2+1=1,即点尸的纵坐标是1.

•;PGVAB',

点G的纵坐标是1,

/.QG=2-1=1.

②存在.理由如下:

•.•△尸3的面积为1,PG=1,

:.QG=2.

根据题意,得P,Q的坐标分别是产-布+5),仅+1,产-2r+2).

如图1,当点G在点。的上方时,QG=」-4「+5-(产-2f+2)=3-2r=2,

=2,一3=2,

此时/=](在0<r<3的范围内).

・一1十5

・・,二1或二".

22

2.(2023•四川甘孜•中考真题)已知抛物线y=Y+6x+c与无轴相交于A(-l,0),B两点,与y轴相交于点

C(0,-3).

(2)尸为第一象限抛物线上一点,,P3C的面积与,ABC的面积相等,求直线A尸的解析式;

【分析】(1)由待定系数法即可求解;

(2)5*"=53°得到钎〃5。,即可求解;

1-/?+c=0,

【详解】(1)由题意,得

c=-3.

b=-2,

c=-3.

(2)由(1)得抛物线的解析式为产元2-2彳-3.

令y=0,贝曦2-2为一3=0,得X]=T,尤2=3.

•••8点的坐标为(3,0).

S&PBC=^AABC,

:.AP//BC.

:3(3,0),C(0,-3),

直线3c的解析式为y=x-3.

•;AP//BC,

,可设直线AP的解析式为y=x+m.

A(T,0)在直线AP上,

・・0=-1+171.

m=l.

•••直线"的解析式为y=x+L

3.(2023.内蒙古呼和浩特.中考真题)探究函数>=-2国?+4国的图象和性质,探究过程如下:

(1)自变量X的取值范围是全体实数,X与,的几组对应值列表如下

_5_3j_25_

XL-2-1012L

~2~2~2222

_52222_5

yL0m020L

~22222~2

其中,机=.根据上表数据,在图1所示的平面直角坐标系中,通过描点画出了函数图象的一部分,

请画出该函数图象的另一部分.观察图象,写出该函数的一条性质;

⑵点P是函数y=-2时+叫图象上的一动点,点4(2,0),点8(—2,0),当k—=3时,请直接写出所有

满足条件的点尸的坐标;

【分析】(1)把尤=-1代入解析式,求出机的值即可,描点,连线画出函数图形,根据图形写出一条性质即

可;

(2)利用义印=(><4'|调=3,进行求解即可.

【详解】(1)解:当x=-l时,y=-2x|_『+4|-l|=-2+4=2,

m=2,

根据题干中的表格数据,描点,连线,得到函数图象,如下:

故答案为:4.

⑵解::点A(2,0),点3(-2,0),

.・.AB=4,

•'-5AFAB=1X4X|);F|=3,

%=±T,

当》=|时:-2|X|2+4|X|=|,

初汨3113

解得:x,=--,x2=--,x3=-,x4=~,

.•・汜!或小遥

当苏时:_2国2+4国=一?

解得:2=+1,x2=一^^一1,

综上:小与,-口或可±;《或d弓》

4.(2023・辽宁盘锦・中考真题)如图,抛物线>=加+灰+3与x轴交于点A(-l,0),8(3,0),与,轴交于点C.

(1)求抛物线的解析式.

⑶如图2,点E是第一象限内一点,连接AE交V轴于点。,AE的延长线交抛物线于点P,点P在线段CO

上,且CF=OD,连接E4,FE,BE,BP,SAAFE=SAABE,求,R4B面积.

【详解】(1)解:.抛物线>=加+次+3与无轴交于点A(-l,0),3(3,0),

jtz—Z?+3=0

'\9a+3b+3=0J

a=-1

解得:

b=2

二抛物线的解析式为:y=-x2+2x+3;

(3)解:设点P。%-4+2机+3),直线AP的解析式为>=区+"

A(-1,O),

-k+b=O

km+b=-m2+2m+3

k=-(m-3)

解得:,

b=—(m-3)

直线AP的解析式为y=-(m-3)x-(m-3),

当x=0时,y=-(m-3)=3-m,

/.(0,3-m),

/.OD=3—m9

CF=OD=3—mJ

在抛物线y=-九2+2尤+3中,当x=0时,y=3,

/.C(0,3),

OC=3,

:.DF=OC-OD-CF=3-(3-m)-(3-m)=2m-3,

设点E的坐标为«,—(m―3»—(m—3),

A(-1,O),5(3,0),

.\AB=4,

‘△AFE='△ABE,

:XDF\xA-xE)=-AByE,

—x(2m-3)x(?+l)=—x4x^-(m-3)?-(m-3)],

解得:m=1,

.二点尸的坐标为3口

。1―1,77

-''sPAB^~ABxyp^~x4x~=~-

5.(2023・湖南・中考真题)如图,二次函数y=d+6x+c的图象与x轴交于A,8两点,与V轴交于C点,

其中3(1,0),C(0,3).

(1)求这个二次函数的表达式;

(2)在二次函数图象上是否存在点P,使得&PAC=SAABC?若存在,请求出P点坐标;若不存在,请说明理

由;

【详解】(1)解:将点3(1,0),C(0,3)代入y=d+6x+c,得

fl+Z?+c=0

[c=3

仿二-4

解得:。

[c=3

•••抛物线解析式为y=f-©+3;

22

(2)vy=x-4x+3=(X-2)-1,

顶点坐标为(2,1),

当y=0时,x2-4x+3=o

解得:%=1,%=3

A(3,0),则。4=3

VC(0,3),则OC=3

AOC是等腰直角三角形,

••V—V

•°APAC一°AAfiC

/.P到AC的距离等于B到AC的距离,

•••4(3,0),C(0,3),设直线AC的解析式为>=履+3

3左+3=0

解得:k=-l

直线AC的解析式为y=-尤+3,

如图所示,过点8作AC的平行线,交抛物线于点尸,

设3尸的解析式为y=r+d,将点3(1,0)代入得,

-l+d=0

解得:<7=1

直线3尸的解析式为y=-x+l,

[y=-x+\

[y=炉-4x+3

•/PA=J(3-2,+F=®PB={(2-1)2+F=也A8=3-1=2

P^+PB1=AB1

AB尸是等腰直角三角形,且/4P3=90。,

如图所示,延长PA至。,使得=过点。作AC的平行线OE,交x轴于点E,则/M=R4,则符

合题意的点尸在直线DE上,

•;△AP8是等腰直角三角形,DE//AC,ACLPD

:.Z.DAE=NBAP=45°PD±DE

,VADE是等腰直角三角形,

AE=CAD=6AP=2

/.E(5,0)

设直线DE的解析式为y=-x+e

,—5+e=0

解得:e=5

直线DE的解析式为7=-尤+5

3-717f3+V17

----------X=----------

综上所述,p(2T)或尸心,尸

6.(2023.黑龙江齐齐哈尔.中考真题)综合与探究

如图,抛物线y=-V+bx+c上的点A,C坐标分别为(0,2),(4,0),抛物线与x轴负半轴交于点3,点、M

(1)求点M的坐标及抛物线的解析式;

(2)点P是抛物线位于第一象限图象上的动点,连接AP,CP,当S&ACMSAACM时,求点尸的坐标;

【分析】(1)根据点M在y轴负半轴且OM=2可得点M的坐标为M(0,-2),利用待定系数法可得抛物线

7

的解析式为y=-Y+5x+2;

(2)过点尸作依轴于点R交线段AC于点E,用待定系数法求得直线AC的解析式为y=-1x+2,

设点尸的横坐标为P(0<P<4),则尸[p,-p2+:p+2),+,故尸E=-p2+4p(0<p<4),先

求得S~CM=8,从而得至l]S&Ac=;PE-OC=-2p2+8p=8,解出p的值,从而得出点尸的坐标;

【详解】(1)解::点M在y轴负半轴且31=2,

将4(0,2),C(4,0)代入了一+匕尤+,,得

c=2

1-16+48+。=0

解得,2

c=2

7

•••抛物线的解析式为y=-x2+jx+2

(2)解:过点尸作尸轴于点尸,交线段AC于点E,

设直线AC的解析式为y=kx+m(k^Q),

将4(0,2),44,0)代入尸4+利,得

m=2k=--

妹+八。,解得2,

m=2

直线AC的解析式为y=-;x+2

设点尸的横坐标为。(。<。<4)

则P(P,—p2+g夕+2),£1[〃,一;〃+2),

PE=-p2+(p+2-1-;〃+2)=-p2+4p{0<p<4)

2

••,SAACM=8,SAPAC=|PE-OC=-2p+8^=8,解得网=0=2,

P(2,5)

7.(2023・四川泸州•中考真题)如图,在平面直角坐标系x0y中,已知抛物线y=ax?+2x+c与坐标轴分别

相交于点A,B,C(0,6)三点,其对称轴为x=2.

⑴求该抛物线的解析式;

(2)点尸是该抛物线上位于第一象限的一个动点,直线■分别与V轴,直线BC交于点。,E.

①当CD=CE时,求8的长;

②若.CW,_CDE,△口/的面积分别为S-邑,邑,且满足豆+$3=252,求点尸的坐标.

【答案】⑴y=-g/+2x+6

⑵①8-2虎;②尸(4,6)

91

【分析】(1)根据抛物线对称轴为尤=2,可得一或=2,求得°=心,再将C(0,6)代入抛物线,根据待定系

数法求得。,即可解答;

(2)①求出点3,点A的坐标,即可得到直线3C的解析式为y=-x+6,设8=。,则£>(0,6-。),求得

AD的解析式,列方程求出点E的坐标,最后根据CD=CE列方程,即可求出的长;

②过召/分别作的垂线段,交A3于点G,H,过点。作EG的垂线段,交EG于点/,根据工+$3=252,

可得AD+£F=2DE,即竺=工,证明,设尸",-《后+2力+6],得到直线AF的解析式,

AF3<2)

求出点。的坐标,即可得到点E的坐标,将点E的坐标代入y=-x+6解方程,即可解答.

【详解】(1)解:根据抛物线的对称轴为x=2,

得*2,

解得a=-g,

将C(0,6)代入抛物线可得6=C,

1,

抛物线的解析式为了=-//+2》+6;

|,

(2)解:当>=。时,得0=-+2尤+6,

解得玉=6,%=-2,

••.A(-2,0),8(6,0),

设CB的解析式为y=h+b,将C(o,6),8(6,0)代入y=区+b,

,f6=

得jo=6Zb+Z/

解得[:=],

.•.。3的解析式为〉=一天+6,

TSCD=a,则。(0,6-a),

设AZ)的解析式为y=+将。(0,6—a),A(—2,0)代入y=G+4,

得[[o6=-_a2勺=+b,6/

k6—a

解得小亏,

b[=6-a

.:钻的解析式为〉=等》+6-。,

y=—x+6

联立方程6-au,

y=----x+o-a

I2

2a

x=------

8-〃

解得

48—8。

y=---------

S-a

根据ACE,得[分-6

解得4=8-2应,出=8+2血,

经检验,«[=8—2>/2,%=8+2>/^是方程的解,

点F是该抛物线上位于第一象限的一个动点,

.:£>在y轴正半轴,

:.a<6f

.,.41—8-21\/2

即C£>的长为8-2夜;

②解:如图,过E『分别作的

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论