2025年苏教版高二数学上册月考试卷_第1页
2025年苏教版高二数学上册月考试卷_第2页
2025年苏教版高二数学上册月考试卷_第3页
2025年苏教版高二数学上册月考试卷_第4页
2025年苏教版高二数学上册月考试卷_第5页
已阅读5页,还剩12页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

…………○…………内…………○…………装…………○…………内…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※…………○…………外…………○…………装…………○…………订…………○…………线…………○…………第=page22页,总=sectionpages22页第=page11页,总=sectionpages11页2025年苏教版高二数学上册月考试卷307考试试卷考试范围:全部知识点;考试时间:120分钟学校:______姓名:______班级:______考号:______总分栏题号一二三四五总分得分评卷人得分一、选择题(共6题,共12分)1、椭圆的焦距为2c,过点作圆x2+y2=a2的两条切线,切点分别为M,N.若椭圆的离心率的取值范围为则∠MPN的取值范围为()

A.

B.

C.

D.

2、若的展开式中没有x的奇次幂项,则含项的系数为()A.5B.-5C.10D.-103、计算=()(A)(B)(C)(D)4、下列命题正确的个数是()

(1)命题“”的否定是“”;

(2)函数的最小正周期为”是“”的必要不充分条件;

(3)在上恒成立在上恒成立。

(4)“平面向量与的夹角是钝角”的充分必要条件是“”。A.1B.2C.3D.45、若则实数a等于()A.-1B.1C.D.6、把黑、红、白3张纸牌分给甲、乙、丙三人,则事件“甲分得红牌”与“乙分得红牌”是()A.对立事件B.互斥但不对立事件C.不可能事件D.必然事件评卷人得分二、填空题(共5题,共10分)7、曲线|x+y|+|x-y|≤2所围成的封闭图形的面积等于____.8、【题文】已知是第四象限角,则=____________.9、【题文】已知程序框图如图所示,该程序运行后,为使输出的b值为16,则循环体的判断框内①处应填________.10、一个设备有2个元件,每个元件损坏的概率为0.1,如果一个损坏,这个设备就不工作,则这个设备工作的概率为____________.11、对于三次函数f(x)=ax3+bx2+cx+d(a鈮�0)

给出定义:设f鈥�(x)

是f(x)

的导数,f鈥�鈥�(x)

是f鈥�(x)

的导数,若方程f鈥�鈥�(x)=0

有实数解x0

则称点(x0,f(x0))

为函数y=f(x)

的“拐点”.

某同学经过探索发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.

设函数f(x)=13x3鈭�12x2+3x鈭�512

请你根据这一发现,计算f(12017)+f(22017)++f(20152017)+f(20162017)=

______.评卷人得分三、作图题(共8题,共16分)12、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

13、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)14、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)15、著名的“将军饮马”问题:有一位将军骑着马要从A地走到B地;但途中要到水边喂马喝一次水,则将军怎样走最近?

16、A是锐角MON内部任意一点,在∠MON的两边OM,ON上各取一点B,C,组成三角形,使三角形周长最小.(如图所示)17、已知,A,B在直线l的两侧,在l上求一点,使得PA+PB最小.(如图所示)18、分别画一个三棱锥和一个四棱台.评卷人得分四、解答题(共2题,共4分)19、某市教育局规定:初中升学须进行体育考试;总分30分,成绩计入初中毕业升学考试总分,还将作为初中毕业生综合素质评价“运动和健康”维度的实证材料.为了解九年级学生的体育素质,某校从九年级的六个班级共420名学生中按分层抽样抽取60名学生进行体育素质测试.

(1)若九(1)班现有学生70人;按分层抽样,则九(1)班应抽取学生多少人?

(2)如图是九年级(1);(2)班所抽取学生的体育测试成绩的茎叶图根据茎叶图估计九(1)、九(2)班学生体育测试的平均成绩;

(3)已知另外四个班级学生的体育测试的平均成绩:17.3;16.9,18.4,19.4.若从六个班级中任意抽取两个班级学生的平均成绩作比较,求平均成绩之差的绝对值不小于1的概率.

20、【题文】给出50个数;1,2,4,7,11,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,,以此类推.要求计算这50个数的和.先将右面给出的程序框图补充完整,再将与其功能相当的程序语言补充完整,把答案写在下面空格上。

程序语言:

i=1

p=1

s=0

DO

s="s"+p

____

i=i+1

____

PRINTs

END

(1)_________(2)__________(3)____评卷人得分五、计算题(共1题,共9分)21、1.(本小题满分12分)分别是椭圆的左右焦点,直线与C相交于A,B两点(1)直线斜率为1且过点若成等差数列,求值(2)若直线且求值.参考答案一、选择题(共6题,共12分)1、A【分析】

画出图形,可得==e;

∵.

∴.

解得

∴.

故选A.

【解析】【答案】利用正弦函数的意义;离心率计算公式即可得出.

2、B【分析】【解析】试题分析:∵的展开式中没有x的奇次幂项,∴a-1=0,∴a=1,故二项式为其展开式通项为令10-2r=8得r=1,故含的项为其系数为-5,故选B考点:本题考查了二项式定理的运用【解析】【答案】B3、B【分析】【解析】

因为选B【解析】【答案】B4、B【分析】【解答】命题“”的否定是“”为真命题;如果函数=的最小正周期为那么由得由得=其最小正周期为所以,(2)是真命题;(3)是假命题,正确的方法是由可将化为所以原命题等价于的最小值;

(4)是假命题.因为有可能与的夹角是故选B.5、A【分析】【分析】因为

所以1-a=2,所以,a=-1故选A.6、B【分析】解:根据题意;把黑;红、白3张纸牌分给甲、乙、丙三人;

事件“甲分得红牌”与“乙分得红牌”不会同时发生;则两者是互斥事件;

但除了“甲分得红牌”与“乙分得红牌”之外;还有“丙分得红牌”,则两者不是对立事件;

则事件“甲分得红牌”与“乙分得红牌”是互斥但不对立事件;

故选B.

根据题意;分析可得“甲分得红牌”与“乙分得红牌”不会同时发生,但除了这2个事件外,还有事件“丙分得红牌”,由对立事件与互斥事件的概念,可得答案.

本题考查对立事件与互斥事件的概念,要注意对立一定互斥,但互斥不一定对立.【解析】【答案】B二、填空题(共5题,共10分)7、略

【分析】

|x+y|+|x-y|≤2可化简为或

∴该曲线表示的平面区域为四个不等式表示的平面区域和在一起;

可知;该曲线表示的平面区域为边长为2的正方形;

∴面积为2×2=4

故答案为4

【解析】【答案】可先把曲线|x+y|+|x-y|≤2中的绝对值符号应用绝对值的代数意义去掉;化成几个不等式组,再求出每个不等式组所表示的平面区域,就可以得到曲线|x+y|+|x-y|≤2所围成的封闭图形的形状,进而求出面积.

8、略

【分析】【解析】

【解析】【答案】9、略

【分析】【解析】解:

【解析】【答案】310、略

【分析】解:根据题意;这个设备工作,即2个元件都没有损坏;

而每个元件损坏的概率为0.1;则没有损坏的概率为1-0.1=0.9;

则这个设备工作的概率P=0.9×0.9=0.81;

故答案为0.81.【解析】0.8111、略

【分析】解:函数的导数f隆盲(x)=x2鈭�x+3

f隆氓(x)=2x鈭�1

由f隆氓(x0)=0

得2x0鈭�1=0

解得x0=12

而f(12)=1

故函数f(x)

关于点(12,1)

对称;

隆脿f(x)+f(1鈭�x)=2

故设f(12017)+f(22017)++f(20152017)+f(20162017)=m

则f(20162017)+f(20152017)++f(12017)=m

两式相加得2隆脕2016=2m

则m=2016

故答案为:2016

由题意对已知函数求两次导数可得图象关于点(12,1)

对称;即f(x)+f(1鈭�x)=2

即可得到结论.

本题主要考查导数的基本运算,利用条件求出函数的对称中心是解决本题的关键.

求和的过程中使用了倒序相加法.【解析】2016

三、作图题(共8题,共16分)12、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

13、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.14、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.15、略

【分析】【分析】根据轴对称的性质作出B点与河面的对称点B′,连接AB′,AB′与河面的交点C即为所求.【解析】【解答】解:作B点与河面的对称点B′;连接AB′,可得到马喝水的地方C;

如图所示;

由对称的性质可知AB′=AC+BC;

根据两点之间线段最短的性质可知;C点即为所求.

16、略

【分析】【分析】作出A关于OM的对称点A',关于ON的A对称点A'',连接A'A'',根据两点之间线段最短即可判断出使三角形周长最小的A、B的值.【解析】【解答】解:作A关于OM的对称点A';关于ON的A对称点A'',与OM;ON相交于B、C,连接ABC即为所求三角形.

证明:∵A与A'关于OM对称;A与A″关于ON对称;

∴AB=A'B;AC=A''C;

于是AB+BC+CA=A'B+BC+A''C=A'A'';

根据两点之间线段最短,A'A''为△ABC的最小值.17、略

【分析】【分析】显然根据两点之间,线段最短,连接两点与直线的交点即为所求作的点.【解析】【解答】解:连接两点与直线的交点即为所求作的点P;

这样PA+PB最小;

理由是两点之间,线段最短.18、解:画三棱锥可分三步完成。

第一步:画底面﹣﹣画一个三角形;

第二步:确定顶点﹣﹣在底面外任一点;

第三步:画侧棱﹣﹣连接顶点与底面三角形各顶点.

画四棱可分三步完成。

第一步:画一个四棱锥;

第二步:在四棱锥一条侧棱上取一点;从这点开始,顺次在各个面内画与底面对应线段平行的线段;

第三步:将多余线段擦去.

【分析】【分析】画三棱锥和画四棱台都是需要先画底面,再确定平面外一点连接这点与底面上的顶点,得到锥体,在画四棱台时,在四棱锥一条侧棱上取一点,从这点开始,顺次在各个面内画与底面对应线段平行的线段,将多余线段擦去,得到图形.四、解答题(共2题,共4分)19、略

【分析】

(1)由分层抽样的特点可知:九年级(1)班应抽取学生为70×=10名;(3分)

(2)九9(1)班抽取学生的平均成绩为==16.5;

九9(2)班抽取学生的平均成绩为==17.2;

由此可以估计九(1)班学生的平均成绩为16.5;九(2)班学生的平均成绩为17.2;(6分)

(3)从六个班级中任意抽取两个班级学生的平均成绩的所有情形为:

(16.5;16.9);(16.5,17.2)、(16.5,17.3)、(16.5,18.4)、(16.5,19.4)

(16.9;17.2);(16.9,17.3)、(16.9,18.4)、(16.9,19.4)

(17.2;17.3);(17.2,18.4)、(17.2,19.4)、(17.3,18.4)、(17.3,19.4)、(18.4,19.4)

共15种

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论