2024年预测:人工智能与网络安全-将颠覆变为机遇_第1页
2024年预测:人工智能与网络安全-将颠覆变为机遇_第2页
2024年预测:人工智能与网络安全-将颠覆变为机遇_第3页
2024年预测:人工智能与网络安全-将颠覆变为机遇_第4页
2024年预测:人工智能与网络安全-将颠覆变为机遇_第5页
已阅读5页,还剩47页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

GartnerResearch

Predicts2024:AI

&Cybersecurity—TurningDisruptionIntoanOpportunity

JeremyD’Hoinne,AvivahLitan,NaderHenein,MarkHorvath,AkifKhan,RobertsonPimentel,BartWillem-sen,DennisXu,WilliamDupre

4December2023

Gartner

Predicts2024:AI&Cybersecurity—TurningDisruptionIntoanOpportunity

Published4December2023-IDG00800663-27minread

ByAnalyst(s):JeremyD'Hoinne,AvivahLitan,NaderHenein,MarkHorvath,AkifKhan,RobertsonPimentel,BartWillemsen,DennisXu,WilliamDupre

Initiatives:CyberRisk;MeetDailyCybersecurityNeeds

GartnerpredictsthatAIwilldurablydisruptcybersecurityin

positiveways,butalsocreatemanyshort-termdisillusions.

Securityandriskmanagementleadersneedtoacceptthat2023wasonlythestarterforgenerativeAI,andprepareforits

evolutions.

Overview

KeyFindings

■GenerativeAI(GenAI)isthelatesttechnologyinalonglineofproclaimeddisruptivetechnologiespromisingtofulfilltheongoingdesirefororganizationstodrasticallyincreaseproductivitymetricsforallteamsviaautomationoftasks.

■Today,mostGenAIfunctionsbuiltintosecurityproductsarefocusedonadding

naturallanguageinterfacestoexistingproductstoimproveefficiencyandusability,butpromisesoffullautomationstarttoappear.Pastattemptstofullyautomate

complexsecurityactivities,includingusingmachinelearningtechniques,haverarelybeenentirelysuccessfulandcanbeawastefuldistractiontoday,andwithshort-termdisillusions.

■GenAIisatpeakhype,drivingveryaggressivepredictionsbasedonthestateofthetechnologytoday.Thisleadstounrealisticdisruptionclaims,butalsoignoresnextstepsinGenAIevolution,suchasmultimodalmodelsandcompositeAI.

■TheinitialforaysbycybersecurityvendorsintogenerativeAIofferonlyalimited

glimpseofthetechnology'spromiseandmightnotbethebestindicationofwhatthefuturecouldbe.

Gartner,Inc.|G00800663Page1of23

Recommendations

Securityandriskmanagement(SRM)leadersinchargeofdevelopingcybersecurityroadmapshould:

■ConstructamultiyearapproachforprogressivelyintegratingGenAIfeaturesand

productswhentheyaugmentsecurityworkflows.Startwithapplicationsecurityandsecurityoperations.

■EvaluateefficiencygainsintandemwiththecostofGenAIimplementations,and

refineyourdetectionandproductivitymetricstoaccountfornewGenAIcybersecurityfeatures.

■PrioritizeinvestmentsinAIaugmentationoftheworkforce,notjusttaskautomation.Prepareforshort-termincreasedspendandlong-termskillrequirementschanges

duetoGenAI.MonitorpotentialshiftinattacksuccessduetoGenAI.

■Accountforpotentialprivacychallengesandbalanceexpectedbenefits,withrisksassociatedwithcumulativecostinthevaluationoflarge-scaleGenAIadoptioninsecurity.

StrategicPlanningAssumptions

By2028,multiagentAIinthreatdetectionandincidentresponsewillrisefrom5%to70%ofAIimplementationstoprimarilyaugment,notreplacestaff.

Through2025,generativeAIwillcauseaspikeofcybersecurityresourcesrequiredto

secureit,causingmorethana15%incrementalspendonapplicationanddatasecurity.

By2026,40%ofdevelopmentorganizationswillusetheAI-basedautoremediationofinsecurecodefromASTvendorsasadefault,upfromlessthan5%in2023.

By2026,attacksusingAI-generateddeepfakesonfacebiometricswillmeanthat30%ofenterpriseswillnolongerconsidersuchidentityverificationandauthenticationsolutionstobereliableinisolation.

By2028,theadoptionofgenerativeaugmentswillcollapsetheskillsgap,removingtheneedforspecializededucationfrom50%ofentry-levelcybersecuritypositions.

Gartner,Inc.|G00800663Page2of23

Analysis

WhatYouNeedtoKnow

PredictionsarestatementsofGartner’spositionsandactionableadviceaboutthefuture.ThisresearchhighlightsGartnerPredictsrelevantforsecurityandriskmanagement

leaderswhohavetonavigateaggressiveclaimsthatGenAIisdisruptingcybersecurity.

Pastexperiencesleadtoskepticismgivenprevious“AIwashing,”whichcausedexpensiveinvestmentsthatdidn’tdeliverexpectedresults.

In4WaysGenerativeAIWillImpactCISOsandTheirTeams,Gartnergivesrecommendationsonareasofimmediatefocusforsecurityleaders:

■ManagetheconsumptionofhostedandembeddedGenAIapplications.

■UpdateapplicationsecuritypracticestoAIapplications,usingAItrust,riskandsecuritymanagement(AITRiSM)technologies.

■AssessthefirstwaveofGenAIannouncementsfromcybersecurityproviders,andputaplantointegratenewfeaturesandproductswhentheyaremoremature.

■AcknowledgethatmaliciousactorswillalsouseGenAIandbepreparedforunpredictablechangesinthethreatlandscape.

Excessivehypedamagesourperceptionoftimeandbalance,butroadmapplanningrequiresthatcybersecurityleadersfactorinallpossibilities,withoutastrongfactbasethatbalancescybersecurityrealitieswithGenAIhopesorpromises(seeFigure1).

Gartner,Inc.|G00800663Page3of23

Figure1:BalancingCybersecurityRealitywithGenAIHopes

Thecybersecurityindustryhaslongbeenobsessedwithfullyautomatedsolutions.ThehypesurroundingGenAIalreadyledtounrealisticpromises,potentiallydamagingthecredibilityoflonger-termimprovementscomingfromfuturefeaturesandproducts.

2023wastheyearofGenAIannouncements,2024shouldbetheyearofminimumviableproducts;2025mightbethefirstyearofGenAIintegrationinsecurityworkflowsdeliveringrealvalue.

AsstatedintheHypeCycleforGenerativeAI,2023,“Severalinnovationshaveafive-to10-yearperiodtomainstreamadoption.”Thisisthecasefor“autonomousagents”and

Gartnerbelievesthatcybersecurityleadersfocusingonhumanaugmentationwillachievebetterresultsthanthosejumpingtooquicklyonsolutionspromisingfullautomation.

Intheshorterterm,we’llobserveexpansionsofcybersecurityusecasesfromexperimentsofmultimodalGenAI(i.e.,learningfrommorethantextcontent)andwillimproveour

abilitytomeasureproductivitygains(seeInnovationInsight:MultimodalAIExplained).

Gartner,Inc.|G00800663Page4of23

StrategicPlanningAssumptions

StrategicPlanningAssumption:By2028,multiagentAIinthreatdetectionandincident

responsewillrisefrom5%to70%ofAIimplementationstoprimarilyaugment,notreplacestaff.

Analysisby:JeremyD’Hoinne,DennisXuKeyFindings:

■MorethanathirdofthefirstwaveofannouncementsonGenAIincybersecurityrelatetosecurityoperationactivities.Toutedcapabilitiesrangefrombasic

interactivehelppromptstonewdedicatedproductannouncementsaimedat

becomingtheprimaryinterfaceforincidentresponseandpostureassessments.

■Fullautomationofthreatdetection,alerttriageandincidentresponsesarethe“reachthemoon”objectivesofmanythreatdetection,investigationandresponse(TDIR)

initiatives.

■HistoryoftenrepeatsandGenAIsparksthesameoverly-optimistichopesforsecurityoperations,similartowhatunsupervisedmachinelearningdidforthreatdetection

morethanfiveyearsago.

■Conversely,teamswithahighermaturitymightimprudentlydismissgenerativecybersecurityAI,basedontheearlyandimmatureimplementationsoflarge

languagemodels(LLMs)intheformof“SOCassistants”prompts.

Near-TermFlag:

Through2024,lessthanathirdofgenerativecybersecurityAIimplementationwillleadtosecurityoperationproductivityimprovementsforenterprises,generatingmorespend.

By2026,theemergenceofnewapproaches,suchas“actiontransformers,”combinedwithmorematureGenAItechniqueswilldrivesemiautonomousplatformsthatwillsignificantlyaugmenttasksexecutedbycybersecurityteams.

MarketImplications:

Buildingstrongsecurityoperationsisdifficult,evenforlargerandwell-funded

organizations.Pickingtherightmixoftools,servicesandinternalstaffwillsufferif

cybersecurityteamsinvesttimeontoolsthatdon’tdelivertotheirpromiseofautomation.Gartner,Inc.|G00800663Page5of23

We'veobservedthispreviouslywhenimplementationsofunsupervisedmachinelearningforthreatdetectionpromisedtowipeoutfalsepositivesandenableautomatedresponse.Ittookyearsforthetoolstomature,andforsecurityoperationteamstotunethemand

narrowdownautomatedblockingtothefewusecaseswhereitworked.WithLLMstoday—andautonomousagents,multimodalandfoundationmodelsinthefuture—

organizationsfaceasimilarchallenge.EarlyclaimsofGenAIawesomenessdivert

expectationsfromincrementalimprovementsandteamaugmentationtolesslikelybigshiftsinautomation,skillrequirementsandstaffversustoolbalance.

Gartneranticipatesshort-termGenAIdisillusions,especiallyin

2024,whereexternalpressuretoincreasesecurityoperation

productivitywillcollidewithlowmaturityfeaturesandfragmentedworkflows.

Symptomsofill-preparedGenAIintegrationwillinclude:

■AbsenceofrelevantmetricstomeasureGenAIbenefits,combinedwithpremiumpricesforGenAIadd-ons.

■DifficultiestointegrateAIassistantsinexistingcollaborationworkflowwithinthesecurityoperationteams,orwhenpartneringwithathird-partysecurityoperationprovider.

■Quicklygrowing“promptfatigue:”toomanytoolsofferinginteractiveinterfacetoqueryaboutthreatsandincidents.

Withtime,newAIapproaches—combinedwithothernon-AItechniqueswhererelevant—mightbringsecurityoperationsclosertoautonomousdecisionsforidentifiedusecases.EmergingAItechniquessupportingthispromiseinclude:

■Multiagentsystems(MAS):TypeofAIsystemscomposedofmultiple,independentbutinteractiveagents.

■Actiontransformers:Modelsthatlearnfromhumanactions.

■Autonomousagents:Self-promptingagentsthatcantakeactionsbasedonLLMsrecipes.

Gartner,Inc.|G00800663Page6of23

Althoughthemythoffullyautomatedresponseandself-healingorganizationsmight

nevertrulyturnintoreality,Gartnerbelievesthatthecombinationofothertechniqueswithmultiagentapproacheswillhaveabigimpactonsecurityoperationsandsecurityin

general.Deploymentsaimedatbothaugmentinghumantasksandaddingprecisionandspeedtohumaninvestigationswillbemoreeffectivethansingle-techniqueAIanalyticsdrivingfullyautonomousresponses,suchasautomatedcontainmentfortheforeseeablefuture.

Recommendations:

■NavigatethechaosofnewlyannouncedGenAIfeaturesinsecurityproductsby

introducingbusinessvalue-drivenAIevaluationframeworks,whichmeasureimpactontangiblemetricssuchasspeed,accuracyandproductivity.

■RunGenAIpilotsprimarilyforincidentresponseandexposuremanagementusecasesthatarenotrealtimeinnature.Setrealisticshort-termobjectives,suchasfalsepositivereductionoropportunitiestoextendstaffrecruitmenttoslightlylessspecializedprofiles.

■Protectthesecurityoperationteamasmuchaspossiblefrommandatesoriginatingoutsideofthesecurityteamtofullyautomateresponseandvulnerabilitytreatmentprocess.Thiswillhelpavoidresistancewhenyouneedtoimplementpromising

GenAItechniqueslater.

■Belucidaboutsecurityproviders’strategytouseGenAIasaclaimeddifferentiatortopromotelargeplatformsleadingtovendorlock-in.

■Don’tneglectproviderevaluationrequirementstoaddressprivacy,copyright,traceabilityandexplainabilitychallenges.

RelatedResearch:

4WaysGenerativeAIWillImpactCISOsandTheirTeamsHypeCycleforArtificialIntelligence,2023

HypeCycleforGenerativeAI,2023

Busting4MythstoUnlockMoreCybersecurityValue

Gartner,Inc.|G00800663Page7of23

StrategicPlanningAssumption:Through2025,generativeAIwillcauseaspikeof

cybersecurityresourcesrequiredtosecureit,causingmorethana15%incrementalspendonapplicationanddatasecurity.

Analysisby:AvivahLitan,JeremyD’HoinneKeyFindings:

■GartnerresearchshowsthatmostenterpriseshavenotyetformalizedacceptableusepoliciesforGenAI,sosecurityandriskmanagersdonotyethaveaframeworkforinstitutingtechnicalcontrols.1

■Integratinglargelanguagemodels(LLMs)andothertypesofmodels,suchas

foundationmodelsinenterpriseapplications,bringnewrisksinthreecategories:contentanomalies,dataprotectionandAIapplicationsecurity.

■Almost90%ofenterprisesarestillresearchingorpilotingGenAI,andmostofthosehaveyettoputAITRiSM(trustriskandsecuritymanagement)technicalcontrolsorpoliciesinplace.

■VendorshostingGenAImodelsdonotalwaysprovideacompletesetofcontrolsthatmitigatetheserisks.Instead,usersneedtoacquiresolutionsthataugmenthostingvendors’limitedcontrols.

■ITleadersmustrelyonhostingLLMvendorswithprotectionoftheirdata,withouttheabilitytoverifytheirsecurityandprivacycontrols.

MarketImplications:

Theuseofthird-partyhostedLLMandGenAImodelsunlocksmanybenefits,butusers

alsomustcontendwithnewuniquerisks,requiringnewsecuritypracticesinthreeprimarycategories:

Gartner,Inc.|G00800663Page8of23

■Contentanomalydetection

■Unacceptableormalicioususe

■Unmanagedenterprisecontenttransmittedthroughpromptsorothermethods,resultingincompromiseofconfidentialdatainputs

■Hallucinationsorinaccurate,illegal,copyright-infringingandotherwise

unwantedorunintendedoutputsthatcompromiseenterprisedecisionmakingorcanleadtobranddamage

■Dataprotection

■Dataleakage,integrityandconfidentialitycompromisesofbothcontentanduserdatainhostedvendorenvironment

■Inabilitytogovernprivacyanddataprotectionpoliciesinexternallyhostedenvironments,orevencontractserviceprovidersasdataprocessors

■Difficultyconductingprivacyimpactassessmentsandcomplyingwithvariousregionalregulations,duetotheblackboxnatureofthethird-partymodelsandthemostlyabsentpossibilitytoofficiallycontractthesemodelprovidersas

dataprocessors,followingprivacylegislativerequirements

■AIapplicationsecurity

■Adversarialpromptingattacks,includingbusinesslogicabusesanddirectandindirectpromptinjections

■Vectordatabaseattacks

■Hackeraccesstomodelstatesandparameters

Ourrecentsurveyofover700webinarattendeesonwhatGenAIriskstheyaremost

concernedaboutvalidatedtheseriskcategories—andhighlightedthatprivacyanddatalossarethetoprisksfromITleaders.1

TheserisksareexacerbatedwhenusingexternallyhostedLLMandotherGenAImodels,asenterpriseslackcapabilitiestodirectlycontroltheirapplicationprocessesanddatahandlingandstorage.However,therisksstillexistinon-premisesmodelshostedand

directlycontrolledbytheenterprise—especiallywhensecurityandriskcontrolsarelacking.

Gartner,Inc.|G00800663Page9of23

ThesethreecategoriesofrisksconfrontusersduringruntimeofAIapplicationsand

models.Figure2showshowthesethreerisksaffectAImodeldevelopmentand

deployment,theAImodelatruntime,plustheeffectfromAIrisksintheITsupplychain.

Thisincludestrainingdata,third-partymodels,codeandlibraries,andpromptandmodelintegrations.

Thesenewattacksurfaceswilldriveenterprisesecuritydepartmentstospendtimeand

moneyimplementingGenAIsecurityandriskmanagementcontrols,suchthatapplicationanddatasecurityspendingwillincreaseatleast15%through2025.

Figure2:GenerativeAIAttackSurfacesAcrosstheAILifeCycle

Gartner,Inc.|G00800663Page10of23

Gartnerexpectsthatmanyenterpriseswillinitiallyacquiresolutionsthatmitigate

input/outputrisksthroughanomalydetectionorsecureAIapplicationstogainvisibilityintoenterpriseuseofGenAIapplicationsandmodels.Thisincludesuseofoff-the-shelfapplications,suchasChatGPTorinteractionsthroughotherintegrationpointslikeplug-ins,promptsorAPIs.GettingtheirarmsaroundenterpriseinteractionswithGenAIisthefirstpriorityfororganizations,andtheseproductscanprovideagoodmapofthose

interactions.Oncethemapisestablished,corefunctionsofmitigatingrisksandsecuritythreatscanbegraduallydeployed.Thisallhasmajorimplicationsonsecuritystaffingandbudgets;henceourpredictionthatsecuritybudgetswillincrease.

Recommendations:

■OrganizewithinandacrossyourenterprisetomanagenewGenAIrisksandsecuritythreats.Onceorganized,establishacceptableGenAIusepoliciesforyourenterprise,andenforcethemonacontinualbasisinpartusingAITRiSMtechnology.

■SetupproofsofconcepttotestemergingAITRiSMproducts,specializedinGenAIinthethreenewriskandsecuritycategoriestoaugmentyoursecuritycontrols,and

applythemtoproductionapplicationsoncetheyperformasrequired.

■Usecontentanomalydetectionproductsthatmitigateinputandoutputrisksto

enforceacceptableusepolicy,andpreventunwantedorotherwiseillegitimatemodelcompletionsandresponsesfromcompromisingyourorganization’sdecision

making,safetyandsecurity.

■PerformuserawarenesstrainingtoreminduserstoalwaysvalidatetheoutputofGenAIproductsforaccuracybeforeincorporatingthemintobusinessworkflow.

■EvaluatetheuseofAIapplicationsecurityproductstoprotectyourorganization

fromhackerswhoexploitnewGenAIthreatvectorstodamageyourorganizationanditsassets.

■Continuetouseknownsecuritycontrolstoprotectsensitiveinformation,applicationstacksandassets,butrecognizetheydon’tmitigaterisksuniquetoLLMs,suchasinaccurate,inflammatoryorcopyrightedoutputsinresponses.

RelatedResearch:

4WaysGenerativeAIWillImpactCISOsandTheirTeams

InnovationGuideforGenerativeAIinTrust,RiskandSecurityManagement

Gartner,Inc.|G00800663Page11of23

GenerativeAIPolicyTemplate

MicrosoftAzureOpenAIvs.OpenAI:ComparingGenAITrust,RiskandSecurity

QuickAnswer:HowtoMakeMicrosoft365CopilotEnterprise-ReadyFromaSecurityandRiskPerspective

StrategicPlanningAssumption:By2026,40%ofdevelopmentorganizationswillusetheAI-basedauto-remediationofinsecurecodefromASTvendorsasadefault,upfromlessthan5%in2023.

Analysisby:MarkHorvathKeyFindings:

■Although80%ofvendorsofferingApplicationSecurityTesting(AST)havesome

formofsuggestingfixestocodebasedonsecurityproblems,(autoremediation),lessthan5%ofdevelopmentorganizationsuseit—inpartbecausethesolutionsit

offersaregenerallyexamples,ratherthanactualcodefixes.

■Developerscomplainthatautoremediationsuggestedbycodesecuritytools(ASTtools)oftenhaveadversesideeffectsonotheraspectsoftheircode,like

performanceandreliability.BecausemostdevelopershaveKPIsaroundthesecodeaspects—andlessstringentonesaroundsecurity—theyviewthesesuggestionsnegatively.

■Developerscanfeeloverloadedbythenumberofplug-instotheirdeveloper

environment—eachofferingadviceonaspecificparameter(e.g.,codequality

assessments,performanceandoptimizationsuggestions,etc.).AnynewadditionstotheIntegratedDevelopmentEnvironment(IDE)willneedtosynthesize

suggestionsbasedontheinputofmorethanoneautocorrectiontool.

Near-TermFlag:WhilemanyAI-basedsecurecodeassistantsareplannedorarein

development,theiradoptionbyreal-worldproductionteamsin2024,asopposedtopilotsorproofsofconcept(POCs),willbealeadingindicatorthattheyofferanadvantageoverexistingsystems.

MarketImplications:

Gartner,Inc.|G00800663Page12of23

Currently,theapplicationsecuritytestingmarketiscenteredaroundahandfulofcore

toolsusedfordeterminingelementsofcodesecurityrisk(e.g.,SAST,DAST,IAST,SCA,IaC,etc.).Althoughtheyinterfacewithdevelopersonadailybasis,theyareprimarilysecuritytoolsandweredesignedtobeusedby,andfor,securityprofessionalsworkingwith

developers.Theyareoftenheavyintermsoftechnicalsecurityjargonandassumethatdevelopershaveanunderstandingofthedata,andareabletoactionittoreducesecurity

risk.However,thereisoftenaconsiderablegapbetweenthesecuritytrainingthatdevelopersreceive,andreal-worldcodesecurityissuesthatoftendon’tlookliketheexamplestheyaretaught.

RemediationguidancefromstandardASTtoolsisusuallyintheformofautocorrection,whichworksinwayssimilartoaspellchecker(e.g.,isthislineformattedcorrectly)?

Guidancetothedeveloversisusuallyspecificonlytosecurity,andonlytothelineorlinesinquestion.Itfailstoprovideamorecomprehensiveanalysisofdifferentaspectsofthecodeinalargercontext.Thisresultsinfairlygenericadvice,usuallyreflectingtheOWASPtop10asthebasisofrepair.

Largelanguagemodels(LLMs)havetheadvantagethattheyarenotonlyabletomore

easilydealwithmultiplecodemetricslikesecurity,qualityandreliability,theyarevery

flexibleinthewaytheycanpresentthedataandsuggestionstodevelopers.LLMshavethepromiseofbeingabletoconvertsecurityjargonintoaneasiertounderstandformat,leadingtoabetterunderstandingoftheissueandamoreeffectivefix.Thecurrent

generationofcodesecurityAIsofferadeveloperachoiceofseveraldifferentsuggestionsforaddressingvulnerabilities,puttingthedeveloperinchargeofpickingthetypeof

remediationthatbestfitsintotheapplication,thuspreservingthe“ownyourcode”philosophy.Thishasseveraladvantages:

■AIsandpeopleoftenworkbettertogetherthaneitheronealone.TheAIassistant

offersabroader(andpotentiallydeeper)viewofavulnerabilities’securityposture,whilethehumanunderstandstheapplication’scontext,goalsandworkflows.TheAIassistantallowsabetterselectionofpossibleremediations,whilekeepingthe

application’sfunctioninmind.

■Bypresentingmultipleoptionstothedevelopers,theycanmoreeasilyrecognizeandfilteroutmisidentifications/hallucinationsfromtheAIassistant.

Gartner,Inc.|G00800663Page13of23

■NoneoftheautoremediationoptionsavailablefromASTtoolseffectivelyinclude

parameterslikeperformance,codequality,reliabilityetc.,whicharebothimportanttodevelopmentteamsandwell-correlatedwithsecurityfindings.NewAI-basedcode

assistantscanoptimizeseveralvariablesbeyondjustsecuritytogivedevelopersmoremotivationinlinewiththeirdevelopmentKPIs.

Recommendations:

■MostenterprisesshouldnotusegenericLLMslikeChatGPTforcodegeneration,

codesecurityscanningorsecurecodereview,duetothehighererrorratesoftoolsnotspecifictosecurity.Instead,relyontoolsthatofferenterprisegradesecurityandgovernancecontrolsforassistingdeveloperswithtechnicaltaskslikesecurity.

■PilotnomorethantwoorthreedifferentAIsecuritycodeassistantstocompareandcontrasttheircapabilities.Thoughproductsarerecentlybecomingcommercially

available,themarketstillhasalongwaytogobeforethesearecommontools.Thecurrentgenerationhasstrengthsandweaknessesindifferentareas,sohave

developmentteamstestthemouttodeterminethemosteffectiveonesforyourorganization.

■Maintainingtheexistingdeveloperexperienceiscriticaltothesuccessfuladoptionofanydeveloperfocusedtools.Changesinworkflow,experienceortestingworksagainstthe“musclememory”ofdevelopersandgeneratesfriction,whichwill

frustratedeveloperswhowillthenavoidusingthetools.

■RememberthatthesetoolsuseanLLM,whichwillneedperiodicretraining.Whenchoosingavendor,askspecificallyaboutprivacy,dataretentionandretraining

detailstoprotectyourIP.AskaboutindemnificationaroundIPloss,licensingissueswithsomecodeoraccidentallyre-usinganothercompany’sIP.

■AICodingAssistantsarerapidlybecomingapopularwayfordeveloperstowritebettercodeatafasterrate.BesuretorunStaticAnalysis(SAST)andSoftware

CompositionAnalysis(SCA)oncodethathasbeengeneratedbyAI.Thiswillhelpensurecodequality,protectIPrightsandcutdownonAImistakesand

misrepresentations.

RelatedResearch:

Gartner,Inc.|G00800663Page14of23

QuickAnswer:MitigatingtheTopFiveSecurityRisksofAICoding

EmergingTech:GenerativeAICodeAssistantsAreBecomingEssentialtoDeveloperExperience

MagicQuadrantforApplicationSecurityTestingHypeCycleforApplicationSecurity,2023

InnovationGuideforAICodingAssistants

StrategicPlanningAssumption:By2026,attacksusingAI-generateddeepfakesonfacebiometricswillmeanthat30%ofenterpriseswillnolongerconsidersuchidentity

verificationandauthenticationsolutionstobereliable

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论