




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
专题39中考最值难点突破阿氏圆问题(原卷版)模块一典例剖析+针对训练类型一求和最小典例1(2022秋•山西期末)阅读以下材料,并按要求完成相应的任务.已知平面上两点A、B,则所有符合PAPB=k(k>0且k≠1)的点阿氏圆基本解法:构造三角形相似.【问题】如图1,在平面直角坐标系中,在x轴,y轴上分别有点C(m,0),D(0,n),点P是平面内一动点,且OP=r,设OPOD=k,求PC+阿氏圆的关键解题步骤:第一步:如图1,在OD上取点M,使得OM:OP=OP:OD=k;第二步:证明kPD=PM;第三步:连接CM,此时CM即为所求的最小值.下面是该题的解答过程(部分):解:在OD上取点M,使得OM:OP=OP:OD=k,又∵∠POD=∠MOP,∴△POM∽△DOP.任务:(1)将以上解答过程补充完整.(2)如图2,在Rt△ABC中,∠ACB=90°,AC=4,BC=3,D为△ABC内一动点,满足CD=2,利用(1)中的结论,请直接写出AD+23
针对训练1.如图,在Rt△ABC中,∠ACB=90°,CB=4,CA=6,⊙C半径为2,P为圆上一动点,连接AP,BP,求AP+122.如图,在平面直角坐标系xOy中,A(6,﹣1),M(4,4),以M为圆心,22为半径画圆,O为原点,P是⊙M上一动点,则PO+2PA的最小值为.3.(2018•碑林区校级三模)问题提出:(1)如图1,在△ABC中,AB=AC,BD是AC边上的中线,请用尺规作图做出AB边上的中线CE,并证明BD=CE:问题探究:(2)如图2,已知点P是边长为6的正方形ABCD内部一动点,PA=3,求PC+12问题解决:(3)如图3,在矩形ABCD中,AB=18,BC=25,点M是矩形内部一动点,MA=15,当MC+35MD最小时,画出点M的位置,并求出MC+
类型二求差最大典例2(2020秋•天宁区校级月考)如图,已知菱形ABCD的边长为8,∠B=60°,圆B的半径为4,点P是圆B上的一个动点,则PD−12PC的最大值为针对训练1.(2018•常熟市二模)如图,已知正方形ABCD的边长为4,⊙B的半径为2,点P是⊙B上的一个动点,则PD−12PC的最大值为2.(2021•商河县校级模拟)(1)初步思考:如图1,在△PCB中,已知PB=2,BC=4,N为BC上一点且BN=1,试证明:PN=1(2)问题提出:如图2,已知正方形ABCD的边长为4,圆B的半径为2,点P是圆B上的一个动点,求PD+12(3)推广运用:如图3,已知菱形ABCD的边长为4,∠B=60°,圆B的半径为2,点P是圆B上的一个动点,求PD−12
类型三综合应用典例3(2020•成华区校级模拟)如图1,抛物线y=mx2﹣3mx+n(m≠0)与x轴交于点C(﹣1,0)与y轴交于点B(0,3),在线段OA上有一动点E(不与O、A重合),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)分别求出抛物线和直线AB的函数表达式;(2)设△PMN的面积为S1,△AEN的面积为S2,当S1S2(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转的到OE′,旋转角为α(0°<α<90°),连接E′A、E′B,求E'A+23E'
针对训练1.(2021•九龙坡区校级模拟)在△ABC中,∠CAB=90°,AC=AB.若点D为AC上一点,连接BD,将BD绕点B顺时针旋转90°得到BE,连接CE,交AB于点F.(1)如图1,若∠ABE=75°,BD=4,求AC的长;(2)如图2,点G为BC的中点,连接FG交BD于点H.若∠ABD=30°,猜想线段DC与线段HG的数量关系,并写出证明过程;(3)如图3,若AB=4,D为AC的中点,将△ABD绕点B旋转得△A′BD′,连接A′C、A′D,当A′D+22A′C最小时,求S△A′
2.(2022•高唐县二模)如图,抛物线y=﹣x2+bx+c经过点A(﹣4,﹣4),B(0,4),直线AC的解析式为y=−12x﹣6,且与y轴相交于点C,若点E是直线AB上的一个动点,过点E作EF⊥x轴交AC于点(1)求抛物线y=﹣x2+bx+c的解析式;(2)点H是y轴上一动点,连接EH,HF,当点E运动到什么位置时,四边形EAFH是矩形?求出此时点E,H的坐标;(3)在(2)的前提下,以点E为圆心,EH长为半径作圆,点M为⊙E上以动点,求12AM+CM
模块二2023中考押题预测1.(2021秋•西峡县期末)如图,在△ABC中,∠A=90°,AB=AC=4,点E、F分别是边AB、AC的中点,点P是以A为圆心、以AE为半径的圆弧上的动点,则12A.4 B.32 C.17 D.2.(2022秋•永嘉县期末)如图所示,∠ACB=60°,半径为2的圆O内切于∠ACB.P为圆O上一动点,过点P作PM、PN分别垂直于∠ACB的两边,垂足为M、N,则PM+2PN的取值范围为.3.(2021秋•龙凤区期末)如图,在Rt△ABC中,∠C=90°,AC=9,BC=4,以点C为圆心,3为半径做⊙C,分别交AC,BC于D,E两点,点P是⊙C上一个动点,则13PA+PB的最小值为4.(2022春•长顺县月考)如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,D、E分别是边BC、AC上的两个动点,且DE=4,P是DE的中点,连接PA,PB,则PA+14PB的最小值为5.(2021秋•梁溪区校级期中)如图,⊙O与y轴、x轴的正半轴分别相交于点M、点N,⊙O半径为3,点A(0,1),点B(2,0),点P在弧MN上移动,连接PA,PB,则3PA+PB的最小值为.6.(2020•武汉模拟)【新知探究】新定义:平面内两定点A,B,所有满足PAPB=k(k为定值)的P点形成的图形是圆,我们把这种圆称之为“【问题解决】如图,在△ABC中,CB=4,AB=2AC,则△ABC面积的最大值为.7.(2020•溧阳市一模)如图,在⊙O中,点A、点B在⊙O上,∠AOB=90°,OA=6,点C在OA上,且OC=2AC,点D是OB的中点,点M是劣弧AB上的动点,则CM+2DM的最小值为.8.如图,正方形ABCD的边长为4,E为BC的中点,以B为圆心,BE为半径作⊙B,点P是⊙B上一动点,连接PD、PC,则PD+12PC的最小值为9.如图,扇形AOB中,∠AOB=90°,OA=6,C是OA的中点,D是OB上一点,OD=5,P是AB上一动点,则PC+12PD的最小值为10.如图所示的平面直角坐标系中,A(0,4),B(4,0),P是第一象限内一动点,OP=2,连接AP、BP,则BP+12AP11.如图,边长为4的正方形,内切圆记为圆O,P为圆O上一动点,则2PA+PB的最小值为.第11题第12题12.如图,在每个小正方形的边长为1的网格中,△OAB的顶点O,A,B均在格点上,点E在OA上,且点E也在格点上.(I)OEOB的值为(Ⅱ)DE是以点O为圆心,2为半径的一段圆弧.在如图所示的网格中,将线段OE绕点O逆时针旋转得到OE′,旋转角为α(0°<α<90°)连接E'A,E'B,当E'A+23E'B的值最小时,请用无刻度的直尺画出点E′,并简要说明点E'的位置是如何找到的(不要求证明)13.(2021秋•定海区期末)如图1,正方形OABC边长是2,以OA为半径作圆,P为弧AC上的一点,过点P作PM⊥AB交AB于点M,连结PO、PA,设PM=m,PA=n.(1)求证:∠POA=2∠PAM;(2)探求m、n的数量关系,并求n﹣m最大值;(3)如图2:连结PB,设PB=h,求2h+2m的最小值.14.(2022•从化区一模)已知,AB是⊙O的直径,AB=42,AC=BC(1)求弦BC的长;(2)若点D是AB下方⊙O上的动点(不与点A,B重合),以CD为边,作正方形CDEF,如图1所示,若M是DF的中点,N是BC的中点,求证:线段MN的长为定值;(3)如图2,点P是动点,且AP=2,连接CP,PB,一动点Q从点C出发,以每秒2个单位的速度沿线段CP匀速运动到点P,再以每秒1个单位的速度沿线段PB匀速运动到点B,到达点B后停止运动,求点Q的运动时间t的最小值.
15.(2021•沙坪坝区校级模拟)如图1,在四
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司版劳动合同2篇
- 部队基层安全生产培训课件
- 部队保密规章制度课件
- 山东省泰安市宁阳县第三中学2024-2025学年八年级下学期第一次月考生物试题(含答案)
- 江苏省苏州市2024-2025学年高二上学期学业质量阳光指标调研政治期末试卷(含答案)
- 广东省潮州市饶平县2024-2025学年八年级下学期3月阶段生物作业试题(含答案)
- 2024-2025学年福建省厦门市同安区人教版三年级下册期末考试数学试卷(无答案)
- 部门和岗位安全培训课件
- 避障灭火机器人课件
- 边坡锚索框格梁施工课件
- 快递分拣人力承包协议书
- 医疗损害责任界定-洞察及研究
- 浙江省G12名校协作体2025学年第一学期9月高三上学期开学联考生物试卷
- 人民防空防护设备管理办法
- 2025年海南省社区工作者招聘考试笔试试题(含答案)
- (2025年标准)监控维护维修协议书
- 2025海南省通信网络技术保障中心招聘事业编制人员(第2号)考试备考题库及答案解析
- 2025年全国中学生天文知识竞赛考试题库(含答案)
- 咸味香精基础知识培训课件
- 2025年医院药师职业技能大赛试题(附答案)
- 筠连王点科技有限公司3万吨-年复合导电浆料配套10吨-年碳纳米管粉体项目环评报告
评论
0/150
提交评论