2025新华师大版七年级数学下教案9.1.2 轴对称的再认识(带反思)_第1页
2025新华师大版七年级数学下教案9.1.2 轴对称的再认识(带反思)_第2页
2025新华师大版七年级数学下教案9.1.2 轴对称的再认识(带反思)_第3页
全文预览已结束

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第9章轴对称、平移与旋转9.1.2轴对称的再认识1.理解线段的垂直平分线(中垂线)的概念.2.理解轴对称图形的对称轴就是连接对应点的线段的垂直平分线.3.会作成轴对称的两个图形或者一个轴对称图形的对称轴.重点:理解连接对称点的线段被对称轴垂直平分.难点:会作轴对称图形的对称轴.一、情境导入1.轴对称图形的定义是什么?2.线段是轴对称图形吗?它的两个端点是否关于某条直线成轴对称?二、合作探究探究点一:简单的轴对称图形下列图形中,不一定是轴对称图形的是()A.等腰三角形B.线段C.钝角D.直角三角形解析:根据轴对称图形的概念求解.如果一个图形沿着一条直线对折后两部分完全重合,这样的图形叫做轴对称图形.解:等腰三角形、线段、钝角都是轴对称图形,故A,B,C选项错误;直角三角形不一定是轴对称图形,只有等腰直角三角形是,故D选项正确.故选D.方法总结:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合.探究点二:画轴对称图形的对称轴如图,△ABC和△DEF关于直线l对称,请仅用无刻度的直尺在图①和图②中,分别作出直线l.解析:上图均为轴对称图形,故连接对称点的线段的垂直平分线就是该图形的对称轴.解:如图①、图②中,直线l即为所求.方法总结:对应线段的交点(或对应线段所在直线的交点)在对称轴上.探究点三:轴对称的性质【类型一】应用轴对称的性质判断数量及位置关系如图,△ABC与△A′B′C′关于直线MN对称,BB′交MN于点O,下列结论:①OB=OB′;②AA′∥BB′;③MN是线段CC′的垂直平分线.其中正确的是________(填序号).解析:利用轴对称的性质可得MN同时是线段AA′,BB′,CC′的垂直平分线,则可得结论①②③都正确.方法总结:轴对称其实就是一种对应关系,对称轴左右的图形可以完全重合.【类型二】利用轴对称的性质求阴影部分的面积如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为()A.4cm2B.8cm2C.12cm2D.16cm2解析:根据正方形的轴对称性,可得阴影部分的面积等于正方形ABCD面积的一半.∵正方形ABCD的边长为4cm,∴S阴影=eq\f(1,2)×42=8(cm2).故选B.方法总结:正方形是轴对称图形,根据图形判断出阴影部分的面积等于正方形面积的一半是解题的关键.【类型三】折叠问题如图,将长方形ABCD沿DE折叠,使A点落在BC上的F处.若∠EFB=60°,则∠CFD=()A.20°B.30°C.40°D.50°解析:根据图形翻折知∠EAD=∠EFD=90°.∵∠EFB=60°,∴∠CFD=180°-60°-90°=30°.故选B.方法总结:折叠是一种轴对称变换,折叠前后图形的形状和大小不变,对应边和对应角相等.三、板书设计1.轴对称图形的性质:在轴对称图形或两个成轴对称的图形中,对应点所连的线段被对称轴垂直平分,对应线段相等,对应角相等.2.如何找一个轴对称图形的对称轴?本节教学从学生熟知的生活情境出发,让学生初步感知对称的事物,从而引入对称,逐步将实物抽象成平面图形,通过操作实践发现其共同特征,导入教学新授,达到串联教材的效果,让学生在这教学情景中快乐地学习,激发了

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论