




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
=在直
4M02函照的就念导及多初等筛照I
目制鲁港。绢施留
考点三年考情(20222024)命题趋势
2023年全国n卷
2023年全国乙卷(理)
考点1:已知奇偶性求参数2024年上海卷
2022年全国乙卷(文)
2023年全国甲卷(理)
2022年天津卷
2023年天津卷
2024年全国甲卷(理)
考点2:函数图像的识别
2024年全国I卷
2022年全国乙卷(文)
2022年全国甲卷(理)
2022年北京卷从近三年高考命题来看,本节
考点3:函数模型及应用2024年北京卷
是高考的一个重点,函数的单
2023年全国I卷
2023年全国乙卷(理)调性、奇偶性、对称性、周期
2022年北京卷
性是高考的必考内容,重点关
考点4:基本初等函数的性2023年北京卷
质:单调性、奇偶性2024年全国I卷注周期性、对称性、奇偶性结
2024年天津卷
合在一起,与函数图像、函数
2023年全国I卷
零点和不等式相结合进行考
2022年浙江卷
考点5:分段函数问题
2024年上海夏季查.
考点6:函数的定义域、值2022年北京卷
域、最值问题2022年北京卷
2023年全国I卷
考点7:函数性质(对称性、
2022年全国I卷
周期性、奇偶性)的综合运
2024年全国I卷
用
2022年全国n卷
2022年天津卷
2022年浙江卷
考点8:指对塞运算
2024年全国甲卷(理)
2023年北京卷
曾窟飨缀。阖滔运温
考点1:已知奇偶性求参数
1.(2023年新课标全国n卷数学真题)若"%)=(尤+a)lnJ为偶函数,贝吐=().
2x+l
A.-1B.0C.;D.1
【答案】B
【解析】因为人>)为偶函数,则/(I)=(1+fl)In1=(-1+(Z)In3,解得a=0,
当a=0时,/(x)=xln2尤I(2x-l)(2x+l)>0,解得x>工或兀v-L
2x+122
则其定义域为或关于原点对称.
2(——12x+l21]2x—l
〃f)=(-x)ln=(-x)ln=(-x)ln2x+lJ=xln=〃x),
2(-x)+l2x-l2x+l
故此时“X)为偶函数.
故选:B.
2.(2023年高考全国乙卷数学(理)真题)已知/(x)=T;是偶函数,则”=()
e^-l
A.-2B.-1C.1D.2
【答案】D
【解析】因为〃工)=与二为偶函数,则f3TJ)=上-_(T-e(")[
e-1J1/J\/已办一1e一⑪一]e^-l
又因为X不恒为0,可得e*_e("f£=0,即e,=e①%,
贝ljx=(a—l)x,即l=a—1,解得a=2.
故选:D.
3.(2024年上海夏季高考数学真题)已知/(耳=丁+即XGR,且是奇函数,贝1]。=
【答案】。
【解析】因为“X)是奇函数,故〃T)+f(x)=0即d+o+(f)3+a=。,
故a=0,
故答案为:0.
4.(2022年高考全国乙卷数学(文)真题)若/(x)=lna+J—+6是奇函数,则〃=,b=.
【答案】-;;ln2.
【解析】[方法一]:奇函数定义域的对称性
若a=0,则〃x)的定义域为{x|xwl},不关于原点对称
QW0
若奇函数的/(%)=/川。+J-I+6有意义,贝!Jxwl且〃+。。
1一%1-x
「.xwl且%wl+L
a
・函数/(尤)为奇函数,定义域关于原点对称,
•-1+~=-1,解得〃=一>
a2
由/(0)=。得,big+b=O,
:.b=ln2,
故答案为:-;;ln2.
[方法二]:函数的奇偶性求参
,/、71I77|Q-〃x+l|17Iax-a-17
/(x)=lna-\-----\+b=ln\---------\+b=ln\----------Fb
1—x1—x1—X
ax+a+\
/(t)=In+/?
1+x
函数/(尤)为奇函数
ax-a\ax+a+1
/(x)+/(-x)=In--------\+ln\------+--2-b=0
1-x111+x
Q2%2一(〃+1)2
In+2b=0
.《=^^n2〃+i=()n〃=」
112
—2b=In—=—2ln2=>A=ln2
4
1,7c
/.a=——,b=Ini
2
[方法三]:
因为函数/(尤)=lna+-+b为奇函数,所以其定义域关于原点对称.
L-X
由。+1匚70可得,(1一同S+1-6)工0,所以x="L-l,解得:a=-}-,即函数的定义域为
1—xa2
(^,-l)u(-l,l)u(l,+w),再由"0)=0可得,b=\n2.即〃x)=ln-〈+J-+ln2=ln产,在定义域
21—X1—X
内满足〃T)=—“X),符合题意.
故答案为:-不;ln2.
—I,+Qx+sin[x+]]为偶函数,则〃二
5.(2023年高考全国甲卷数学(理)真题)若/(x)=(x
【答案】2
【解析】因为y=/(无)=(x-l)2+ax+sin[x+5)=(x-l)2
+QX+COS%为偶函数,定义域为R,
所以d-如=/但〕,ipf---lT--«+cosf--Kf-[Y7171
—1H--(2+COS—,
(""J12J212J12J22
则3=仁+1[一[]—1]=2兀,故〃=2,
此时/(x)=(%—1)2+2%+cosx=x2+1+cosX
所以/(-X)=(-兀)2+1+COS(-X)=%2+1+COS.c=〃x),
又定义域为R,故〃可为偶函数,
所以〃=2.
故答案为:2.
考点2:函数图像的识别
〃x)=BT的图像为()
6.(2022年新高考天津数学高考真题)函数
以,A
B._______________V------:_A
-1O1X—~¥X
A仅
,人
1「、
【答案】D
【解析】函数的定义域为卜卜3。},
且〃T)==-/W,
函数/'(X)为奇函数,A选项错误;
卜T、o,c选项错误;
又当XV。时,〃力=
X
当X>1时,仆)=J=X一工函数单调递增,故B选项错误;
XX
故选:D.
7.(2023年天津高考数学真题)已知函数〃X)的部分图象如下图所示,则“X)的解析式可能为(
5sin%
B.
x2+1
5ex+5e-x5cosx
C.D.
九2+2x2+1
【答案】D
【解析】由图知:函数图象关于y轴对称,其为偶函数,且/(-2)=/(2)<0,
5sin(-x)5sinx
由且定义域为R,即B中函数为奇函数,排除;
(-%)2+1X2+1
当时%2(;,)〉o,即、c中(0,+s)上函数值为正,排除;
>0、5e+eA
X2+2
故选:D
8.(2024年高考全国甲卷数学(理)真题)函数〃尤)=f2+⑹一/卜欣在区间[-2.8,2.8]的图象大致为(
[解析]/(—x)=—x2+1-"—ex)sin(—x)=—x2+(e“—e-x)sinx=f(x),
又函数定义域为[-2.8,2.8],故该函数为偶函数,可排除A、C,
sinl>-1+[e——.7ieI11c
又41)=T+sin—=——11----->--------->0,
622e42e
故可排除D.
故选:B.
9.(2024年新课标全国I卷数学真题)当V[0,2汨时,曲线y=sinx与y=2sin[3xW]的交点个数为()
A.3B.4C.6D.8
【答案】C
【解析】因为函数,=$皿尤的的最小正周期为7=2兀,
函数y=2sin(3x-胃的最小正周期为T=g,
所以在xe[0,2可上函数y=2sin(3x-。有三个周期的图象,
在坐标系中结合五点法画出两函数图象,如图所示:
10.(2022年高考全国乙卷数学(文)真题)如图是下列四个函数中的某个函数在区间[-3,3]的大致图像,
则该函数是()
2xcosx2sin%
D.y=
x2+1x2+1
【解析】设/(尤)=/,则”1)=0,故排除B;
2xcosx
设/?(%)=当x[o,用时,0<cosx<l,
%2+1
LLt、i1(\2%cosx2%..»>.1*
所以/7(元)=—;~—<—~-<1,故排除C;
人~I-I4J.
设g(x)=]当,则8⑶二手>0,故排除D.
故选:A.
H.(2022年高考全国甲卷数学(理)真题)函数y=(313-,)cosx在区间一]看的图象大致为()
【答案】A
【解析】令〃司=(3,-3-,)COSX,XG,
则/(-x)=(3一"一3芯)cos(-x)=_(3"-3一Bcosx=-f(x),
所以为奇函数,排除BD;
又当时,3-3-*>0,cosx>0,所以/(x)>0,排除C.
故选:A.
考点3:函数的实际应用
12.(2022年新高考北京数学高考真题)在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨
临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和吆尸的
关系,其中T表示温度,单位是K;尸表示压强,单位是bar.下列结论中正确的是()
A.当T=220,尸=1026时,二氧化碳处于液态
B.当7=270,尸=128时,二氧化碳处于气态
C.当7=300,P=9987时,二氧化碳处于超临界状态
D.当7=360,尸=729时,二氧化碳处于超临界状态
【答案】D
【解析】当7=220,尸=1026时,lgP>3,此时二氧化碳处于固态,故A错误.
当T=270,P=128时,2<lgP<3,此时二氧化碳处于液态,故B错误.
当7=300,P=9987时,IgP与4非常接近,故此时二氧化碳处于固态,对应的是非超临界状态,故C错
误.
当T=360,P=729时,因2<lg尸<3,故此时二氧化碳处于超临界状态,故D正确.
故选:D
13.(2。24年北京高考数学真题)生物丰富度指数八而是河流水质的一个评价指标,其中分别表
示河流中的生物种类数与生物个体总数.生物丰富度指数d越大,水质越好.如果某河流治理前后的生物种
类数S没有变化,生物个体总数由N]变为M,生物丰富度指数由2.1提高到3.15,则()
A.33=2$B.2N[=3N\
C.=MD.Nl=N,
【答案】D
S—1S—1
【解析】由题意得17=2」,K=315,则2.1111乂=3.15111乂,即21nM=3m例,所以匹=N;.
JLJLJLViAll/Vo
故选:D.
14.(多选题)(2023年新课标全国I卷数学真题)噪声污染问题越来越受到重视.用声压级来度量声音的
强弱,定义声压级4=20x1g二,其中常数。o(p°>O)是听觉下限阈值,。是实际声压.下表为不同声源
Po
的声压级:
声源与声源的距离/m声压级/dB
燃油汽车1060〜90
混合动力汽车105060
电动汽车1040
已知在距离燃油汽车、混合动力汽车、电动汽车10m处测得实际声压分别为P”P2,P3,则().
A.A>p2B.p2>10p3
C.p3=IO。。。D.Pi<100p2
【答案】ACD
【解析】由题意可知:Lpie[60,90],Lp2e[50,60],Lft=40,
对于选项A:可得4f啜一2°x嗤3啥
因为q“理,则与一L「20xlg且20,即1g且20,
,2P1
所以221且口.>0,可得p/p2,故A正确;
对于选项B:可得4,一=20xlg&-20xlgB=20xlg运,
PoPoP3
因为Lp?—Lp3=Lp2—40N10,贝ij20xlg£210,
所以上2ViU且〃2,,3〉0,可得p22715P3,
,3
当且仅当4z=50时,等号成立,故B错误;
对于选项C:因为4=20xlg△=40,即1g上=2,
PoPo
可得乙=100,即03=10000,故C正确;
Po
对于选项D:由选项A可知:4]-%2=20xlg包,
22
且乙一乙<90-50=40,则20x1g且M40,
'12Pi
即1g且42,可得&W100,且p"2>0,所以RVlOOpz,故D正确;
PlP1
故选:ACD.
考点4:基本初等函数的性质:单调性、奇偶性
15.(2023年高考全国乙卷数学(理)真题)设ae(O,l),若函数〃出=优+(1+«)*在(0,+“)上单调递增,
则a的取值范围是.
【答案】
【解析】由函数的解析式可得((尤)=o'lna+(1+a)'In(1+a)20在区间(0,+S)上恒成立,
则(1+a)'In(1+a)2-优Ina,即[詈]2-4看)在区间他+⑹上恒成立'
故[曰=1"京、,而4+1«1,2),故叩+加。,
ln(a+l)>-Ina+21故组
故即<a<lf
0<〃<10<。<1
结合题意可得实数。的取值范围是
故答案为:
16.(2。22年新高考北京数学高考真题)已知函数―备,则对任意实数x,有()
A./(-%)+/(%)=0B./(-x)-/(x)=0
D.=;
C./(-%)+/(%)=1
【答案】C
112X1
【解析】/(-x)+/(x)=------1-----=-----1-----=1,故A错误,C正确;
1+2一“1+2"1+2、1+2龙
]__12%___1__2
/(-x)-/(x)=不是常数,故BD错误;
1+2-X~1+2X1+2X-1+2X-2X+1--2"+l
故选:C.
17.(2023年北京高考数学真题)下列函数中,在区间(0,+8)上单调递增的是()
A./(x)=-lnxB./。)=上
2
c./«=--D./(X)=3M
【答案】c
【解析】对于A,因为y=inx在(0,+e)上单调递增,y=-x在(0,+8)上单调递减,
所以"X)=-InX在(0,+8)上单调递减,故A错误;
对于B,因为y=2工在(0,+8)上单调递增,y=:在(0,+e)上单调递减,
所以/■(x)=(在(0,+s)上单调递减,故B错误;
对于C,因为y=:在(0,+8)上单调递减,>=-%在(0,+8)上单调递减,
所以〃尤)=-:在(0,+e)上单调递增,故C正确;
对于D,因为“£|=3日=33=若,f(l)=3M=3°=l,/(2)=3IM=3,
显然〃》)=3日在(0,+s)上不单调,D错误.
故选:C.
18.(2024年新课标全国I卷数学真题)已知函数/。)=一][26:""二°在区上单调递增,则。的取值
[e'+ln(x+l),x>0
范围是()
A.(一8,。]B.[-1,0]C.[-1,1]D.[0,+«0
【答案】B
【解析】因为在R上单调递增,且x20时,/(力=3+111(工+1)单调递增,
__0
则需满足2x(-1),解得一ivavo,
-a<e°+In1
即a的范围是
故选:B.
19.(2024年天津高考数学真题)下列函数是偶函数的是()
x22
人e-x「cosx+x-sin%+4x
A.y——B.y=------------C.y=D.y=----n------
x+1x+1x+1J朋
【答案】B
【解析】对A,设〃x)==^,函数定义域为R,但4-1)=£匕,〃1)=与,则〃一1片〃1),故
xH-122
A错误;
对B'设g(x)="'函数定义域为R’
cos(-x)+(-x)-cosx+x2
且g(-x)==g(x),则g(x)为偶函数,故B正确;
X2+1
对C,设=函数定义域为{尤IxH-l},不关于原点对称,则不是偶函数,故C错误;
对D,设矶x)=sinx:4x,函数定义域为R,因为姒1)=吧1±1,^(-l)=-sinl~4,
eee
则。⑴则e(x)不是偶函数,故D错误.
故选:B.
20.(2023年新课标全国I卷数学真题)设函数〃尤)=甸在区间(0,1)上单调递减,则a的取值范围是()
A.B.[-2,0)
C.(0,2]D.[2,-H®)
【答案】D
【解析】函数y=2*在R上单调递增,而函数人"=2*(、)在区间(0,1)上单调递减,
2
则有函数>=道》-4)=。一|)2一*在区间(0,1)上单调递减,因此■|zl,解得422,
所以。的取值范围是[2,+8).
故选:D
考点5:分段函数问题
-炉+2,xW1,
21.(2022年新高考浙江数学高考真题)已知函数〃x)=<11[则/;若当
XH-----1,X>1,
X
xe[a,b]^fl</(x)<3,则人―a的最大值是
【答案】——3+V5/^/5+3
【解析】由已知/(9=一]g:+2=:,/(:)=:+;一1=H,
所以小叫吗,
当x«l时,由14/(尤)<3可得1W-Y+2W3,所以一IVxVl,
当x>l时,由l4/(x)W3可得lWx+』-lV3,所以l<x<2+g,
X
1K/(X)K3等价于—1WX42+6,所以[a,句0一1,2+石],
所以的最大值为3+6.
37
故答案为:--,3+^3.
2o
22.(2024年上海夏季高考数学真题)已知=则/(3)=
【答案】73
【解析】因为“"=1£;;°,故"3)=6,
故答案为:百.
考点6:函数的定义域、值域、最值问题
23.(2022年新高考北京数学高考真题)函数/(%)=1+71=T的定义域是
X
【答案】(y,o)u(o』
【解析】因为所以to,解得E且XW0,
故函数的定义域为(9,0)口(0』
故答案为:(7),0)口(0』
-ax+1,x<a,
24.(2022年新高考北京数学高考真题)设函数/(x)=若存在最小值,则。的一个取
(x-2),x>a.
值为;a的最大值为.
【答案】0(答案不唯一)1
1,x<0
【解析】若。=0时,fM={'、c,.••/(x)mi=。;
(x-2),x>0n
若a<0时,当尤<。时,f(x)=-ax+l单调递增,当xf-8时,f(x)-co,故/(x)没有最小值,不符合题
目要求;
若。>0时,
当%<〃时,f(x)=-ax+1单调递减,/(%)>/(〃)=-a2+1,
0(0<tz<2)
当x〉a时,f(x).={.
3J7mn\a-2)2(a>2)
••一〃2+120或一。2+1之(。-2)2,
解得0<6Z<l,
综上可得m;
故答案为:o(答案不唯一),i
考点7:函数性质(对称性、周期性、奇偶性)的综合运用
25.(多选题)(2023年新课标全国I卷数学真题)已知函数“X)的定义域为R,〃冲)=+,
则(),
A.40)=0B./(1)=0
C.“X)是偶函数D.》=。为/(6的极小值点
【答案】ABC
【解析】方法一:
因为/(孙)=y2fW+%2/(y)>
对于A,令尤=y=0,/(0)=0/(0)+0/(0)=0,故A正确.
对于B,令X=y=l,/(I)=1/(1)+1/(1),则/(l)=o,故B正确.
对于C,令x=y=-l,/(I)=/(-1)+/(-1)=2/(-1),则f(-l)=。,
令y==f(x)+x2/(-l)=f(x),
又函数/(丈)的定义域为R,所以/(x)为偶函数,故c正确,
对于D,不妨令/(x)=0,显然符合题设条件,此时/(X)无极值,故D错误.
方法二:
因为/(孙)=y2/(x)+%2/(y),
对于A,令无=y=0,/(O)=0/(0)+0/(0)=0,故A正确.
对于B,令X=y=l,/(I)=1/(1)+1/(1),贝IJF⑴=。,故B正确.
对于C,令尤=y=-l,/(1)-/(-1)+/(-1)=2/(-1),贝厅(一1)=0,
令y=T/(t)=f(x)+x2f(-l)=于(x),
又函数/(九)的定义域为R,所以〃尤)为偶函数,故C正确,
对于D,当时,对/(盯)=y2/(x)+%2/(y)两边同时除以,得到三*2=£翌+32,
X2ln|x|,工
0,x=0
当x>0肘,f(x)=x2Inx,贝!J/r(x)=2xInx+x2•—=x(2Inx+1),
x
令外力<0,得()<%<小令用%)>。,得
故”x)在O,e一[上单调递减,在e—1+8上单调递增,
\7\7
/1A(-1\
因为,(九)为偶函数,所以/(X)在-e2,0上单调递增,在-8,e2上单调递减,
\7\7
显然,此时%=0是的极大值,故D错误.
故选:ABC.
26.(多选题)(2022年新高考全国I卷数学真题)已知函数〃%)及其导函数/'(%)的定义域均为R,记
g(x)=f'(x),若上-2“,g(2+x)均为偶函数,则()
A./(0)=0B.=°C./(-I)=/(4)D.g(-l)=g(2)
【答案】BC
【解析】[方法一]:对称性和周期性的关系研究
对于/⑴,因为了《一2d为偶函数,所以/1|-2x]=/1|+2x]即=+①,所以
3
f(3-x)=f(x),所以/⑴关于尤=£对称,则/(-1)=/(4),故C正确;
对于g(x),因为g(2+x)为偶函数,g(2+x)=g(2-x),g(4-x)=g(x),所以g(x)关于x=2对称,由①求
导,和g(x)=/'(无),得[/]|•一尤]=/(■f+xj=-f(I一d=r(|+d=-g]|_d=g(|+d,所
以g(3—x)+g(x)=。,所以g(x)关于g,0)对称,因为其定义域为R,所以g]Tj=。,结合g(x)关于X=2对
称,从而周期T=4X[2-|]=2,所以g"=g[£|=O,g(-l)=g(l)=-g(2),故B正确,D错误;
若函数Ax)满足题设条件,则函数/(x)+C(C为常数)也满足题设条件,所以无法确定Ax)的函数值,故
A错误.
故选:BC.
[方法二]:【最优解】特殊值,构造函数法.
由方法一知g(x)周期为2,关于X=2对称,故可设g(x)=cos(7tr),则〃x)=1sin(7ix)+c,显然A,D错
兀
误,选BC.
故选:BC.
[方法三]:
因为-2x),g(2+x)均为偶函数,
所以'|-2力=(|+2xj即/(l-x)"(|+尤),g")=g(2-x),
所以〃3—x)=/(x),g(4-x)=g(x),则/(一1)=/(4),故C正确;
3
函数/«,冢乃的图象分别关于直线%=玉%=2对称,
2
又g(x)=/(%),且函数=幻可导,
所以g0=O,g(3_x)=_g(x),
所以g(4-x)=g(x)=-g(3-x),所以g(x+2)=-g(x+l)=g(x),
所以g1-£|=8(胃=。,g(-l)=g(l)=-g(2),故B正确,D错误;
若函数Ax)满足题设条件,则函数/(x)+C(C为常数)也满足题设条件,所以无法确定了(x)的函数值,故
A错误.
故选:BC.
【点评】方法一:根据题意赋值变换得到函数的性质,即可判断各选项的真假,转化难度较高,是该题的
通性通法;
方法二:根据题意得出的性质构造特殊函数,再验证选项,简单明了,是该题的最优解.
27.(2024年新课标全国I卷数学真题)已知函数Ax)的定义域为R,f(x)>/^-l)+f(x-2),且当x<3
时/(无)=x,则下列结论中一定正确的是()
A./(10)>100B./(20)>1000
c./(10)<1000D./(20)<10000
【答案】B
【解析】因为当x<3时/(x)=x,所以/(1)=1,/(2)=2,
又因为f(x)>AxT)+f(x-2),
则/(3)>/(2)+/(I)=3,/(4)>/(3)+/(2)>5,
/(5)>/(4)+/(3)>8,/(6)>/(5)+/(4)>13,/(7)>/(6)+/(5)>21,
/(8)>/(7)+/(6)>34,/(9)>/(8)+/(7)>55,/(10)>/(9)+/(8)>89,
/(Il)>/(10)+/(9)>144,/(12)>/(U)+/(IO)>233,/(13)>/(12)+/(11)>377
/(14)>/(13)+/(12)>610,/(15)>/(14)+/(13)>987,
/(16)>/(15)+/(14)>1597>1OOO,则依次下去可知f(20)>1000,则B正确;
且无证据表明ACD一定正确.
故选:B.
28.(2022年新高考全国H卷数学真题)已知函数的定义域为R,且
22
了(元+y)+/(尤一y)=/(x)/(y),f(D=i,则工/(6=()
k=T
A.-3B.-2C.0D.1
【答案】A
【解析】[方法一]:赋值加性质
因为/(x+y)+〃x—y)=/(x)〃y),令无=i,y=°可得,=所以/(0)=2,令x=o可得,
/(y)+/(-y)=2/(y),即〃y)=/(—y),所以函数/(x)为偶函数,令y=i得,
/(x+l)+/(x-l)=/(x)/(l)=/(%),即有f(x+2)+/(x)=/(x+l),从而可知/(x+2)=—f(x—1),
/(x-l)^-/(x-4),故〃x+2)"(x-4),即〃x)=/(x+6),所以函数的一个周期为6.因为
/(2)=/(1)-/(0)=1-2=-1,/(3)=/(2)-/(1)=-1-1=-2,/(4)=/(-2)=/(2)=-1,
f(5)=f(-l)=f(l)=l,/(6)=/(0)=2,所以
一个周期内的/。)+/(2)++/(6)=0.由于22除以6余4,
22
所以£〃笈)=〃1)+〃2)+〃3)+〃4)=1一1一2-1=-3.故选:A.
4=1
[方法二]:【最优解】构造特殊函数
由〃x+y)+/(x-y)=/(x)/(y),联想到余弦函数和差化积公式
cos(x+y)+cos(x-y)=2cosxcosy,可设/(x)=acos@x,则由方法一中/(0)=2,/(l)=l知a=2,acoso=l,
171
解得COSG=5,取刃=每,
所以/(x)=2cosgx,则
/(x+y)+/(x—y)=2cos[gx+Wy]+2cos(gx—gy]=4cosWxcosWy=/(x)/(y),所以/(x)=2cos?x
7=2%=6
符合条件,因此/(x)的周期三一,/(0)=2,/。)=1,且
3
/(2)=-1,/(3)=-2,/(4)=-1,/(5)=1,/(6)=2,所以/(1)+/(2)+/(3)+/(4)+/(5)+/(6)=0,
由于22除以6余4,
22
所以£/(4)=〃1)+〃2)+〃3)+〃4)=1一1一2-1=-3.故选:A.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河北邯郸市肥乡区公开选聘农村党务(村务)工作者100名模拟试卷附答案详解
- 北京市中医院肝内胆管结石手术处理考核
- 北京市中医院慢性腹泻病因诊断思路考核试题
- 2025年河北雄安新区雄县卫健系统公开招聘专业技术人员71名模拟试卷附答案详解(典型题)
- 唐山市人民医院内分泌高血压病因筛查考核
- 秦皇岛市人民医院药物生产质量管理考核
- 大学课件兼职
- 2025年4月重庆市妇幼保健院部分岗位招聘考前自测高频考点模拟试题及完整答案详解
- 衡水市中医院小儿推拿技术专项技能考核
- 张家口市人民医院后勤人力资源调配与绩效考核方案
- 血源性传播疾病暴露后处理
- 2024年湖北省科学技术馆度招聘真题
- 《习作:缩写故事》教学课件
- DB44∕T 2418-2023 公路路堤软基处理技术标准
- 钻芯法检测混凝土强度技术规程JGJ-T384-2024
- 人货场的培训课件
- 图书馆寻宝活动方案
- 2025年广西专业技术人员继续教育公需科目(三)答案
- 护理低温烫伤课件
- 2025至2030LED电源行业产业运行态势及投资规划深度研究报告
- 搅拌站泵车管理制度
评论
0/150
提交评论