高考数学复习专题一函数与导数不等式第5讲导数与不等式的证明恒成立及能成立问题_第1页
高考数学复习专题一函数与导数不等式第5讲导数与不等式的证明恒成立及能成立问题_第2页
高考数学复习专题一函数与导数不等式第5讲导数与不等式的证明恒成立及能成立问题_第3页
高考数学复习专题一函数与导数不等式第5讲导数与不等式的证明恒成立及能成立问题_第4页
高考数学复习专题一函数与导数不等式第5讲导数与不等式的证明恒成立及能成立问题_第5页
已阅读5页,还剩35页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

第5讲导数与不等式证实、恒成立及能

成立问题高考定位在高考压轴题中,函数与不等式交汇是考查热点,常以含指数、对数函数为载体考查不等式证实、比较大小、范围等问题,以及不等式恒成立与能成立问题.1/40真题感悟2/403/404/405/406/40考

合1.利用导数处理不等式恒成立问题“两种”惯用方法(1)分离参数后转化为函数最值问题:将原不等式分离参数,转化为不含参数函数最值问题,利用导数求该函数最值,依据要求得所求范围.普通地,f(x)≥a恒成立,只需f(x)min≥a即可;f(x)≤a恒成立,只需f(x)max≤a即可.(2)转化为含参函数最值问题:将不等式转化为某含待求参数函数最值问题,利用导数求该函数极值(最值),伴有对参数分类讨论,然后构建不等式求解.7/402.常见结构辅助函数四种方法(1)直接结构法:证实不等式f(x)>g(x)(f(x)<g(x))问题转化为证实f(x)-g(x)>0(f(x)-g(x)<0),进而结构辅助函数h(x)=f(x)-g(x).(2)结构“形似”函数:稍作变形后结构.对原不等式同解变形,如移项、通分、取对数,把不等式转化为左右两边是相同结构式子结构,依据“相同结构”结构辅助函数.(3)适当放缩后再结构:若所结构函数最值不易求解,可将所证实不等式进行放缩,再重新结构函数.(4)结构双函数:若直接结构函数求导,难以判断符号,导数零点也不易求得,所以单调性和极值点都不易取得,从而结构f(x)和g(x),利用其最值求解.8/403.不等式恒成立与能成立问题(1)f(x)>g(x)对一切x∈[a,b]恒成立⇔[a,b]是f(x)>g(x)解集子集⇔[f(x)-g(x)]min>0(x∈[a,b]).(2)f(x)>g(x)对x∈[a,b]能成立⇔[a,b]与f(x)>g(x)解集交集不是空集⇔[f(x)-g(x)]max>0(x∈[a,b]).(3)对∀x1,x2∈[a,b]使得f(x1)≤g(x2)⇔f(x)max≤g(x)min.(4)对∀x1∈[a,b],∃x2∈[a,b]使得f(x1)≥g(x2)⇔f(x)min≥g(x)min.9/40热点一导数与不等式[微题型1]利用导数证实不等式10/4011/4012/4013/40[微题型2]不等式恒成立求参数范围问题【例1-2】(1)已知函数f(x)=ax-1-lnx,a∈R.14/4015/4016/4017/4018/40探究提升

(1)利用最值法处理恒成立问题基本思绪是:先找到准确范围,再说明“此范围之外”不适合题意(着眼于“恒”字,寻找反例即可).(2)对于求不等式成立时参数范围问题,在可能情况下把参数分离出来,使不等式一端是含有参数不等式,另一端是一个区间上详细函数.但要注意分离参数法不是万能,假如分离参数后,得出函数解析式较为复杂,性质极难研究,就不要使用分离参数法.19/40【训练1】

(·浙江五校联考)已知a>0,b∈R,函数f(x)=4ax3-2bx-a+b.(1)证实:当0≤x≤1时,①函数f(x)最大值为|2a-b|+a;②f(x)+|2a-b|+a≥0;(2)若-1≤f(x)≤1对x∈[0,1]恒成立,求a+b取值范围.20/4021/4022/4023/4024/40热点二不等式恒成立与能成立问题[微题型1]恒成立问题【例2-1】

(·四川卷)设函数f(x)=ax2-a-lnx,其中a∈R.25/4026/4027/40探究提升

(1)恒成立问题普通与不等式相关,处理这类问题需要结构函数利用函数单调性求函数最值,从而说明函数值恒大于或恒小于某一确定值.(2)在求参数范围时首先要考虑参数能否分离出来.28/40[微题型2]能成立问题(1)当x∈[1,e]时,求f(x)最小值;(2)当a<1时,若存在x1∈[e,e2],使得对任意x2∈[-2,0],f(x1)<g(x2)恒成立,求a取值范围.29/4030/4031/40探究提升

存在性问题和恒成立问题区分与联络存在性问题和恒成立问题轻易混同,它们现有区分又有联络:若g(x)≤m恒成立,则g(x)max≤m;若g(x)≥m恒成立,则g(x)min≥m;若g(x)≤m有解,则g(x)min≤m;若g(x)≥m有解,则g(x)max≥m.32/40【训练2】

(·宁波期末)已知函数f(x)=x3+3|x-a|(a∈R).(1)若f(x)在[-1,1]上最大值和最小值分别记为M(a),m(a),求M(a)-m(a);(2)设b∈R.若[f(x)+b]2≤4对x∈[-1,1]恒成立,求3a+b取值范围.33/4034/4035/4036/4037/4038/401.不等式恒成立、能成立问题惯用解法有:(1)分离参数后转化为最值,不等式恒成立问题在变量与参数易于分离情况下,采取分离参数转化为函数最值问题,形如a>f(x)max或a<f(x)min.(2)直接转化为函数最值问题,在参数难于分离情况下,直接转化为含参函数最值问题,伴有对参数分类讨论.(3)数形结合.39/402.利用导数证实不等式基本步骤(1)作差或变形.(2)结构新函数h

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论