




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏扬州市2025届高三4月调研考试数学试题试卷注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图,中,点D在BC上,,将沿AD旋转得到三棱锥,分别记,与平面ADC所成角为,,则,的大小关系是()A. B.C.,两种情况都存在 D.存在某一位置使得2.设,则““是“”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必条件3.的展开式中各项系数的和为2,则该展开式中常数项为A.-40 B.-20 C.20 D.404.设函数(,为自然对数的底数),定义在上的函数满足,且当时,.若存在,且为函数的一个零点,则实数的取值范围为()A. B. C. D.5.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为;当无放回依次取出两个小球时,记取出的红球数为,则()A., B.,C., D.,6.函数的一个单调递增区间是()A. B. C. D.7.已知定义在上的函数满足,且当时,,则方程的最小实根的值为()A. B. C. D.8.为了进一步提升驾驶人交通安全文明意识,驾考新规要求驾校学员必须到街道路口执勤站岗,协助交警劝导交通.现有甲、乙等5名驾校学员按要求分配到三个不同的路口站岗,每个路口至少一人,且甲、乙在同一路口的分配方案共有()A.12种 B.24种 C.36种 D.48种9.已知,且,则的值为()A. B. C. D.10.一个空间几何体的正视图是长为4,宽为的长方形,侧视图是边长为2的等边三角形,俯视图如图所示,则该几何体的体积为()A. B. C. D.11.已知函数,若所有点,所构成的平面区域面积为,则()A. B. C.1 D.12.已知,则下列说法中正确的是()A.是假命题 B.是真命题C.是真命题 D.是假命题二、填空题:本题共4小题,每小题5分,共20分。13.已知函数若关于的不等式的解集是,则的值为_____.14.双曲线的左焦点为,点,点P为双曲线右支上的动点,且周长的最小值为8,则双曲线的实轴长为________,离心率为________.15.若一个正四面体的棱长为1,四个顶点在同一个球面上,则此球的表面积为_________.16.集合,,则_____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在三棱锥中,,,,平面平面,、分别为、中点.(1)求证:;(2)求二面角的大小.18.(12分)在中,、、的对应边分别为、、,已知,,.(1)求;(2)设为中点,求的长.19.(12分)已知函数在上的最大值为3.(1)求的值及函数的单调递增区间;(2)若锐角中角所对的边分别为,且,求的取值范围.20.(12分)某中学的甲、乙、丙三名同学参加高校自主招生考试,每位同学彼此独立的从五所高校中任选2所.(1)求甲、乙、丙三名同学都选高校的概率;(2)若已知甲同学特别喜欢高校,他必选校,另在四校中再随机选1所;而同学乙和丙对五所高校没有偏爱,因此他们每人在五所高校中随机选2所.(i)求甲同学选高校且乙、丙都未选高校的概率;(ii)记为甲、乙、丙三名同学中选高校的人数,求随机变量的分布列及数学期望.21.(12分)在直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为,点的极坐标为.(1)求的直角坐标方程和的直角坐标;(2)设与交于,两点,线段的中点为,求.22.(10分)移动支付(支付宝及微信支付)已经渐渐成为人们购物消费的一种支付方式,为调查市民使用移动支付的年龄结构,随机对100位市民做问卷调查得到列联表如下:(1)将上列联表补充完整,并请说明在犯错误的概率不超过0.01的前提下,认为支付方式与年龄是否有关?(2)在使用移动支付的人群中采用分层抽样的方式抽取10人做进一步的问卷调查,从这10人随机中选出3人颁发参与奖励,设年龄都低于35岁(含35岁)的人数为,求的分布列及期望.(参考公式:(其中)
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.A【解析】
根据题意作出垂线段,表示出所要求得、角,分别表示出其正弦值进行比较大小,从而判断出角的大小,即可得答案.【详解】由题可得过点作交于点,过作的垂线,垂足为,则易得,.设,则有,,,可得,.,,;,;,,,.综上可得,.故选:.本题考查空间直线与平面所成的角的大小关系,考查三角函数的图象和性质,意在考查学生对这些知识的理解掌握水平.2.B【解析】
解出两个不等式的解集,根据充分条件和必要条件的定义,即可得到本题答案.【详解】由,得,又由,得,因为集合,所以“”是“”的必要不充分条件.故选:B本题主要考查必要不充分条件的判断,其中涉及到绝对值不等式和一元二次不等式的解法.3.D【解析】令x=1得a=1.故原式=.的通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,选D解析2.用组合提取法,把原式看做6个因式相乘,若第1个括号提出x,从余下的5个括号中选2个提出x,选3个提出;若第1个括号提出,从余下的括号中选2个提出,选3个提出x.故常数项==-40+80=404.D【解析】
先构造函数,由题意判断出函数的奇偶性,再对函数求导,判断其单调性,进而可求出结果.【详解】构造函数,因为,所以,所以为奇函数,当时,,所以在上单调递减,所以在R上单调递减.因为存在,所以,所以,化简得,所以,即令,因为为函数的一个零点,所以在时有一个零点因为当时,,所以函数在时单调递减,由选项知,,又因为,所以要使在时有一个零点,只需使,解得,所以a的取值范围为,故选D.本题主要考查函数与方程的综合问题,难度较大.5.B【解析】
分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系.【详解】可能的取值为;可能的取值为,,,,故,.,,故,,故,.故选B.离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.6.D【解析】
利用同角三角函数的基本关系式、二倍角公式和辅助角公式化简表达式,再根据三角函数单调区间的求法,求得的单调区间,由此确定正确选项.【详解】因为,由单调递增,则(),解得(),当时,D选项正确.C选项是递减区间,A,B选项中有部分增区间部分减区间.故选:D本小题考查三角函数的恒等变换,三角函数的图象与性质等基础知识;考查运算求解能力,推理论证能力,数形结合思想,应用意识.7.C【解析】
先确定解析式求出的函数值,然后判断出方程的最小实根的范围结合此时的,通过计算即可得到答案.【详解】当时,,所以,故当时,,所以,而,所以,又当时,的极大值为1,所以当时,的极大值为,设方程的最小实根为,,则,即,此时令,得,所以最小实根为411.故选:C.本题考查函数与方程的根的最小值问题,涉及函数极大值、函数解析式的求法等知识,本题有一定的难度及高度,是一道有较好区分度的压轴选这题.8.C【解析】
先将甲、乙两人看作一个整体,当作一个元素,再将这四个元素分成3个部分,每一个部分至少一个,再将这3部分分配到3个不同的路口,根据分步计数原理可得选项.【详解】把甲、乙两名交警看作一个整体,个人变成了4个元素,再把这4个元素分成3部分,每部分至少有1个人,共有种方法,再把这3部分分到3个不同的路口,有种方法,由分步计数原理,共有种方案。故选:C.本题主要考查排列与组合,常常运用捆绑法,插空法,先分组后分配等一些基本思想和方法解决问题,属于中档题.9.A【解析】
由及得到、,进一步得到,再利用两角差的正切公式计算即可.【详解】因为,所以,又,所以,,所以.故选:A.本题考查三角函数诱导公式、二倍角公式以及两角差的正切公式的应用,考查学生的基本计算能力,是一道基础题.10.B【解析】
由三视图确定原几何体是正三棱柱,由此可求得体积.【详解】由题意原几何体是正三棱柱,.故选:B.本题考查三视图,考查棱柱的体积.解题关键是由三视图不愿出原几何体.11.D【解析】
依题意,可得,在上单调递增,于是可得在上的值域为,继而可得,解之即可.【详解】解:,因为,,所以,在上单调递增,则在上的值域为,因为所有点所构成的平面区域面积为,所以,解得,故选:D.本题考查利用导数研究函数的单调性,理解题意,得到是关键,考查运算能力,属于中档题.12.D【解析】
举例判断命题p与q的真假,再由复合命题的真假判断得答案.【详解】当时,故命题为假命题;记f(x)=ex﹣x的导数为f′(x)=ex,易知f(x)=ex﹣x(﹣∞,0)上递减,在(0,+∞)上递增,∴f(x)>f(0)=1>0,即,故命题为真命题;∴是假命题故选D本题考查复合命题的真假判断,考查全称命题与特称命题的真假,考查指对函数的图象与性质,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13.【解析】
根据题意可知的两根为,再根据解集的区间端点得出参数的关系,再求解即可.【详解】解:因为函数,关于的不等式的解集是的两根为:和;所以有:且;且;;故答案为:本题主要考查了不等式的解集与参数之间的关系,属于基础题.14.22【解析】
设双曲线的右焦点为,根据周长为,计算得到答案.【详解】设双曲线的右焦点为.周长为:.当共线时等号成立,故,即实轴长为,.故答案为:;.本题考查双曲线周长的最值问题,离心率,实轴长,意在考查学生的计算能力和转化能力.15.【解析】
将四面体补成一个正方体,通过正方体的对角线与球的半径的关系,得到球的半径,利用球的表面积公式,即可求解.【详解】如图所示,将正四面体补形成一个正方体,则正四面体的外接球与正方体的外接球表示同一个球,因为正四面体的棱长为1,所以正方体的棱长为,设球的半径为,因为球的直径是正方体的对角线,即,解得,所以球的表面积为.本题主要考查了有关求得组合体的结构特征,以及球的表面积的计算,其中巧妙构造正方体,利用正方体的外接球的直径等于正方体的对角线长,得到球的半径是解答的关键,着重考查了空间想象能力,以及运算与求解能力,属于基础题.16.【解析】
分析出集合A为奇数构成的集合,即可求得交集.【详解】因为表示为奇数,故.故答案为:此题考查求集合的交集,根据已知集合求解,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)证明见解析;(2)60°.【解析】试题分析:(1)连结PD,由题意可得,则AB⊥平面PDE,;(2)法一:结合几何关系做出二面角的平面角,计算可得其正切值为,故二面角的大小为;法二:以D为原点建立空间直角坐标系,计算可得平面PBE的法向量.平面PAB的法向量为.据此计算可得二面角的大小为.试题解析:(1)连结PD,PA=PB,PDAB.,BCAB,DEAB.又,AB平面PDE,PE平面PDE,∴ABPE.(2)法一:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.则DEPD,又EDAB,PD平面AB=D,DE平面PAB,过D做DF垂直PB与F,连接EF,则EFPB,∠DFE为所求二面角的平面角,则:DE=,DF=,则,故二面角的大小为法二:平面PAB平面ABC,平面PAB平面ABC=AB,PDAB,PD平面ABC.如图,以D为原点建立空间直角坐标系,B(1,0,0),P(0,0,),E(0,,0),=(1,0,),=(0,,).设平面PBE的法向量,令,得.DE平面PAB,平面PAB的法向量为.设二面角的大小为,由图知,,所以即二面角的大小为.18.(1);(2).【解析】
(1)直接根据特殊角的三角函数值求出,结合正弦定理求出;(2)结合第一问的结论以及余弦定理即可求解.【详解】解:(1)∵,且,∴,由正弦定理,∴,∵∴锐角,∴(2)∵,∴∴∴在中,由余弦定理得∴本题主要考查了正弦定理和余弦定理的运用.考查了学生对三角函数基础知识的综合运用.19.(1),函数的单调递增区间为;(2).【解析】
(1)运用降幂公式和辅助角公式,把函数的解析式化为正弦型函数解析式形式,根据已知,可以求出的值,再结合正弦型函数的性质求出函数的单调递增区间;(2)由(1)结合已知,可以求出角的值,通过正弦定理把问题的取值范围转化为两边对角的正弦值的比值的取值范围,结合已知是锐角三角形,三角形内角和定理,最后求出的取值范围.【详解】解:(1)由已知,所以因此令得因此函数的单调递增区间为(2)由已知,∴由得,因此所以因为为锐角三角形,所以,解得因此,那么本题考查了降幂公式、辅助角公式,考查了正弦定理,考查了正弦型三角函数的单调性,考查了数学运算能力.20.(1)(2)(i)(ii)分布列见解析,【解析】
(1)先计算甲、乙、丙同学分别选择D高校的概率,利用事件的独立性即得解;(2)(i)分别计算每个事件的概率,再利用事件的独立性即得解;(ii),利用事件的独立性,分别计算对应的概率,列出分布列,计算数学期望即得解.【详解】(1)甲从五所高校中任选2所,共有共10种情况,甲、乙、丙同学都选高校,共有四种情况,甲同学选高校的概率为,因此乙、丙两同学选高校的概率为,因为每位同学彼此独立,所以甲、乙、丙三名同学都选高校的概率为.(2)(i)甲同学必选校且选高校的概率为,乙未选高校的概率为,丙未选高校的概率为,因为每位同学彼此独立,所以甲同学选高校且乙、丙都未选高校的概率为.(ii),因此,.即的分布列为0123因此数学期望为.本题考查了事件独立性的应用和随机变量的分布列和期望,考查了学生综合分析,概念理解,实际应用,数学运算的能力,属于中档题.21.(1),(2)【解析】
(1)利用互化公式把曲线C化成直角坐标方程,把点P的极坐标化成直角坐标;(2)把直线l的参数方程的标准形式代入曲线C的直角坐标方程,根据韦达定理以及参数t的几何意义可得.【详解】(1)由ρ2得ρ2+ρ2sin2θ=2,将ρ2=x2+y2,y=ρsin
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 健脾消食药效与中药协同作用研究-洞察及研究
- 2025至2030中国有机豆粕行业运营态势与投资前景调查研究报告
- 数字化转型下实体店竞争优势研究-洞察及研究
- 消费者偏好影响因素研究-洞察及研究
- 交互艺术与用户体验-洞察及研究
- 机器学习在竞争情报中的应用-洞察及研究
- 健身平台运营风险-洞察及研究
- 大数据与系统建模融合-洞察及研究
- 专用仪器产业链优化-洞察及研究
- 桂枝颗粒与地方文化传承-洞察及研究
- 医疗仪器设备效益考核办法
- 生产产能提升激励方案
- 车间5S管理培训
- 2025年度汽车销量目标达成合作协议模板
- ICU糖尿病酮症酸中毒护理
- 公司绿色可持续发展规划报告
- 高速铁路桥隧养护维修 课件 2 桥隧养护维修工作的基本方法和基本内容
- 战略规划六步法
- 2024年废旧溴化锂出售合同范本
- 《销售培训实例》课件
- 糖尿病足的影像学鉴别诊断
评论
0/150
提交评论