2025届河北省石家庄市五校联合体高考数学试题(甲卷)_第1页
2025届河北省石家庄市五校联合体高考数学试题(甲卷)_第2页
2025届河北省石家庄市五校联合体高考数学试题(甲卷)_第3页
2025届河北省石家庄市五校联合体高考数学试题(甲卷)_第4页
2025届河北省石家庄市五校联合体高考数学试题(甲卷)_第5页
已阅读5页,还剩13页未读 继续免费阅读

付费下载

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2025届河北省石家庄市五校联合体高考数学试题(甲卷)考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知正项等比数列的前项和为,且,则公比的值为()A. B.或 C. D.2.已知数列的通项公式是,则()A.0 B.55 C.66 D.783.设集合A={4,5,7,9},B={3,4,7,8,9},全集U=AB,则集合中的元素共有()A.3个 B.4个 C.5个 D.6个4.若函数恰有3个零点,则实数的取值范围是()A. B. C. D.5.执行如图所示的程序框图,若输出的,则①处应填写()A. B. C. D.6.已知函数,若,则a的取值范围为()A. B. C. D.7.将函数向左平移个单位,得到的图象,则满足()A.图象关于点对称,在区间上为增函数B.函数最大值为2,图象关于点对称C.图象关于直线对称,在上的最小值为1D.最小正周期为,在有两个根8.下列函数中,值域为的偶函数是()A. B. C. D.9.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则10.已知,则p是q的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件11.若复数(为虚数单位)的实部与虚部相等,则的值为()A. B. C. D.12.已知椭圆,直线与直线相交于点,且点在椭圆内恒成立,则椭圆的离心率取值范围为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.变量满足约束条件,则目标函数的最大值是____.14.如果复数满足,那么______(为虚数单位).15.已知函数,若在定义域内恒有,则实数的取值范围是__________.16.已知为双曲线的左、右焦点,过点作直线与圆相切于点,且与双曲线的右支相交于点,若是上的一个靠近点的三等分点,且,则四边形的面积为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设数列是等比数列,,已知,(1)求数列的首项和公比;(2)求数列的通项公式.18.(12分)如图所示,在四棱锥中,∥,,点分别为的中点.(1)证明:∥面;(2)若,且,面面,求二面角的余弦值.19.(12分)已知在平面直角坐标系中,椭圆的焦点为为椭圆上任意一点,且.(1)求椭圆的标准方程;(2)若直线交椭圆于两点,且满足(分别为直线的斜率),求的面积为时直线的方程.20.(12分)已知集合,.(1)若,则;(2)若,求实数的取值范围.21.(12分)的内角的对边分别为,已知.(1)求的大小;(2)若,求面积的最大值.22.(10分)已知矩阵,求矩阵的特征值及其相应的特征向量.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】

由可得,故可求的值.【详解】因为,所以,故,因为正项等比数列,故,所以,故选C.【点睛】一般地,如果为等比数列,为其前项和,则有性质:(1)若,则;(2)公比时,则有,其中为常数且;(3)为等比数列()且公比为.2.D【解析】

先分为奇数和偶数两种情况计算出的值,可进一步得到数列的通项公式,然后代入转化计算,再根据等差数列求和公式计算出结果.【详解】解:由题意得,当为奇数时,,当为偶数时,所以当为奇数时,;当为偶数时,,所以故选:D【点睛】此题考查数列与三角函数的综合问题,以及数列求和,考查了正弦函数的性质应用,等差数列的求和公式,属于中档题.3.A【解析】试题分析:,,所以,即集合中共有3个元素,故选A.考点:集合的运算.4.B【解析】

求导函数,求出函数的极值,利用函数恰有三个零点,即可求实数的取值范围.【详解】函数的导数为,令,则或,上单调递减,上单调递增,所以0或是函数y的极值点,函数的极值为:,函数恰有三个零点,则实数的取值范围是:.故选B.【点睛】该题考查的是有关结合函数零点个数,来确定参数的取值范围的问题,在解题的过程中,注意应用导数研究函数图象的走向,利用数形结合思想,转化为函数图象间交点个数的问题,难度不大.5.B【解析】

模拟程序框图运行分析即得解.【详解】;;.所以①处应填写“”故选:B【点睛】本题主要考查程序框图,意在考查学生对这些知识的理解掌握水平.6.C【解析】

求出函数定义域,在定义域内确定函数的单调性,利用单调性解不等式.【详解】由得,在时,是增函数,是增函数,是增函数,∴是增函数,∴由得,解得.故选:C.【点睛】本题考查函数的单调性,考查解函数不等式,解题关键是确定函数的单调性,解题时可先确定函数定义域,在定义域内求解.7.C【解析】

由辅助角公式化简三角函数式,结合三角函数图象平移变换即可求得的解析式,结合正弦函数的图象与性质即可判断各选项.【详解】函数,则,将向左平移个单位,可得,由正弦函数的性质可知,的对称中心满足,解得,所以A、B选项中的对称中心错误;对于C,的对称轴满足,解得,所以图象关于直线对称;当时,,由正弦函数性质可知,所以在上的最小值为1,所以C正确;对于D,最小正周期为,当,,由正弦函数的图象与性质可知,时仅有一个解为,所以D错误;综上可知,正确的为C,故选:C.【点睛】本题考查了三角函数式的化简,三角函数图象平移变换,正弦函数图象与性质的综合应用,属于中档题.8.C【解析】试题分析:A中,函数为偶函数,但,不满足条件;B中,函数为奇函数,不满足条件;C中,函数为偶函数且,满足条件;D中,函数为偶函数,但,不满足条件,故选C.考点:1、函数的奇偶性;2、函数的值域.9.C【解析】

根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.10.B【解析】

根据诱导公式化简再分析即可.【详解】因为,所以q成立可以推出p成立,但p成立得不到q成立,例如,而,所以p是q的必要而不充分条件.故选:B【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.11.C【解析】

利用复数的除法,以及复数的基本概念求解即可.【详解】,又的实部与虚部相等,,解得.故选:C【点睛】本题主要考查复数的除法运算,复数的概念运用.12.A【解析】

先求得椭圆焦点坐标,判断出直线过椭圆的焦点.然后判断出,判断出点的轨迹方程,根据恒在椭圆内列不等式,化简后求得离心率的取值范围.【详解】设是椭圆的焦点,所以.直线过点,直线过点,由于,所以,所以点的轨迹是以为直径的圆.由于点在椭圆内恒成立,所以椭圆的短轴大于,即,所以,所以双曲线的离心率,所以.故选:A【点睛】本小题主要考查直线与直线的位置关系,考查动点轨迹的判断,考查椭圆离心率的取值范围的求法,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13.5【解析】

分析:画出可行域,平移直线,当直线经过时,可得有最大值.详解:画出束条件表示的可行性,如图,由可得,可得,目标函数变形为,平移直线,当直线经过时,可得有最大值,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的定点就是最优解);(3)将最优解坐标代入目标函数求出最值.14.【解析】

把已知等式变形,再由复数代数形式的乘除运算化简,然后利用复数模的计算公式求解.【详解】∵,∴,∴,故答案为:.【点睛】本小题主要考查复数除法运算,考查复数的模的求法,属于基础题.15.【解析】

根据指数函数与对数函数图象可将原题转化为恒成立问题,凑而可知的图象在过原点且与两函数相切的两条切线之间;利用过一点的曲线切线的求法可求得两切线斜率,结合分母不为零的条件可最终确定的取值范围.【详解】由指数函数与对数函数图象可知:,恒成立可转化为恒成立,即恒成立,,即是夹在函数与的图象之间,的图象在过原点且与两函数相切的两条切线之间.设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;设过原点且与相切的直线与函数相切于点,则切线斜率,解得:;当时,,又,满足题意;综上所述:实数的取值范围为.【点睛】本题考查恒成立问题的求解,重点考查了导数几何意义应用中的过一点的曲线切线的求解方法;关键是能够结合指数函数和对数函数图象将问题转化为切线斜率的求解问题;易错点是忽略分母不为零的限制,忽略对于临界值能否取得的讨论.16.60【解析】

根据题中给的信息与双曲线的定义可求得与,再在中,由余弦定理求解得,继而得到各边的长度,再根据计算求解即可.【详解】如图所示:设双曲线的半焦距为.因为,,,所以由勾股定理,得.所以.因为是上一个靠近点的三等分点,是的中点,所以.由双曲线的定义可知:,所以.在中,由余弦定理可得,所以,整理可得.所以,解得.所以.则.则,得.则的底边上的高为.所以.故答案为:60【点睛】本题主要考查了双曲线中利用定义与余弦定理求解线段长度与面积的方法,需要根据双曲线的定义表示各边的长度,再在合适的三角形里面利用余弦定理求得基本量的关系.属于难题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)【解析】

本题主要考查了等比数列的通项公式的求解,数列求和的错位相减求和是数列求和中的重点与难点,要注意掌握.(1)设等比数列{an}的公比为q,则q+q2=6,解方程可求q(2)由(1)可求an=a1•qn-1=2n-1,结合数列的特点,考虑利用错位相减可求数列的和解:(1)(2),两式相减:18.(1)证明见解析(2)【解析】

(1)根据题意,连接交于,连接,利用三角形全等得,进而可得结论;(2)建立空间直角坐标系,利用向量求得平面的法向量,进而可得二面角的余弦值.【详解】(1)证明:连接交于,连接,,≌,且,面面,面,(2)取中点,连,.由,面面面,又由,以分别为轴建立如图所示空间直角坐标系,设,则,,,,,,为面的一个法向量,设面的法向量为,依题意,即,令,解得,所以,平面的法向量,,又因二面角为锐角,故二面角的余弦值为.【点睛】本题考查直线与平面平行的证明,考查二面角的余弦值的求法,解题时要认真审题,注意中位线和向量法的合理运用,属于基础题.19.(1)(2)或【解析】

(1)根据椭圆定义求得,得椭圆方程;(2)设,由得,应用韦达定理得,代入已知条件可得,再由椭圆中弦长公式求得弦长,原点到直线的距离,得三角形面积,从而可求得,得直线方程.【详解】解:(1)据题意设椭圆的方程为则椭圆的标准方程为.(2)据得设,则又原点到直线的距离解得或所求直线的方程为或【点睛】本题考查求椭圆标准方程,考查直线与椭圆相交问题.解题时采取设而不求思想,即设交点坐标为,直线方程与椭圆方程联立消元后应用韦达定理得,把这个结论代入题中条件求得参数,用它求弦长等等,从而解决问题.20.(1);(2)【解析】

(1)将代入可得集合B,解对数不等式可得集合A,由并集运算即可得解.(2)由可知B为A的子集,即;当符合题意,当B不为空集时,由不等式关系即可求得的取值范围.【详解】(1)若,则,依题意,故;(2)因为,故;若,即时,,符合题意;若,即时,,解得;综上所述,实数的取值范围为.【点睛】本题考查了集合的并集运算,由集合的包含关系求参数的取值范围,注意讨论集合是否为空集的情况,属于基础题.21.(1);(2).【解析】

(1)利用正弦定理将边化角,结合诱导公式可化简边角关系式,求得,根据可求得结果;(2)利用余弦定理可得,利用基本不等式可求得,代入三角形面积公式可求得结果.【详解】(1)由正弦定理得:,又,即由得:(2)由余弦定理得:又(当且仅当时取等号)即三角形面积的最大值为:【点睛】本题考查解三角形的相关知识,涉及到正弦定理化简边角关系式、余弦定理解三角形、三角

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论