版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
湖南省衡阳市蒸湘区呆鹰岭中学、蒸湘中学、雨母山中学联考2024-2025学年九年级下学期3月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.若式子在实数范围内有意义,则的取值范围是(
)A. B. C. D.2.下列一元二次方程有实数解的是()A.2x2﹣x+1=0 B.x2﹣2x+2=0 C.x2+3x﹣2=0 D.x2+2=03.下列运算中错误的是(
)A. B. C. D.4.如图,在中,弦的长为6,圆心O到的距离,则的半径长为(
)
A.4 B. C.5 D.5.如图,PA,PB是的切线,A、B为切点,若,则的度数为(
)A. B. C. D.6.如图,在中,点分别为边的中点.下列结论中,错误的是(
)A. B. C. D.7.下列说法正确的是(
)A.“任意画一个三角形,其内角和为”是必然事件 B.调查全国中学生的视力情况,适合采用普查的方式C.抽样调查的样本容量越小,对总体的估计就越准确 D.十字路口的交通信号灯有红、黄、绿三种颜色,所以开车经过十字路口时,恰好遇到黄灯的概率是8.关于二次函数,下列说法正确的是(
)A.函数图象的开口向下 B.函数图象的顶点坐标是C.该函数有最大值,最大值是5 D.当时,y随x的增大而增大9.如图,在中,,,,则的长为(
)A.5 B. C. D.210.如图,在矩形中,是边的中点,于点,连接,分析下列结论:①;②;③;④,其中正确的结论有(
)A.①②④ B.②③④ C.①③ D.①②③④二、填空题11.计算:.12.从,,,0,3这五个数中随机抽取一个数,恰好是无理数的概率是.13.已知、是方程的两个实数根,则.14.如图,甲、乙两名同学分别站在C、D的位置时,乙的影子与甲的影子的末端恰好在同一点,已知甲、乙两同学相距1m,甲身高1.8m,乙身高1.5m,则甲的影子是m.15.如图,在Rt△ABC中,∠C=90°,若sinA=,则cosB=.16.如图,点A,B,C在上,,则度.17.如图,圆锥底面圆的半径为4,则这个圆锥的侧面展开图中的长为.18.已知二次函数y=﹣x2+4x+5及一次函数y=﹣x+b,将该二次函数在x轴上方的图象沿x轴翻折到x轴下方,图象的其余部分不变,得到一个新图象(如图所示),当直线y=﹣x+b与新图象有4个交点时,b的取值范围是.
三、解答题19.计算:.20.如图,在平面直角坐标系中,的顶点坐标分别为,,.以原点为位似中心,在轴的右侧将各边放大为原来的两倍得到.(1)画出;(2)分别写出、、三点的对应点、、的坐标.21.在中,是斜边上的高.
(1)证明:;(2)若,求的长.22.某校为落实“双减”工作,增强课后服务的吸引力,充分用好课后服务时间,为学有余力的学生拓展学习空间,成立了5个活动小组(每位学生只能参加一个活动小组):A.音乐;B.体育;C.美术;D.阅读;E.人工智能.为了解学生对以上活动的参与情况,随机抽取部分学生进行了调查统计,并根据统计结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)①此次调查一共随机抽取了________名学生;②补全条形统计图(要求在条形图上方注明人数);③扇形统计图中圆心角________度;(2)若该校有3200名学生,估计该校参加D组(阅读)的学生人数;(3)刘老师计划从E组(人工智能)的甲、乙、丙、丁四位学生中随机抽取两人参加市青少年机器人竞赛,请用树状图法或列表法求出恰好抽中甲、乙两人的概率.23.随着科技的发展,无人机已广泛应用于生产生活,如代替人们在高空测量距离和高度.圆圆要测量教学楼的高度,借助无人机设计了如下测量方案:如图,圆圆在离教学楼底部米的C处,遥控无人机旋停在点C的正上方的点D处,测得教学楼的顶部B处的俯角为,长为米.已知目高为米.
(1)求教学楼的高度.(2)若无人机保持现有高度沿平行于的方向,以米/秒的速度继续向前匀速飞行,求经过多少秒时,无人机刚好离开圆圆的视线.24.某服装店销售一批衬衫,每件进价元,开始以每件元的价格销售,每星期能卖出件,后来因库存积压,决定降价销售,经两次降价后的每件售价元,每星期能卖出件.已知两次降价百分率相同,求每次降价的百分率;聪明的店主在降价过程中发现,适当的降价既可增加销售又可增加收入,且每件衬衫售价每降低元,销售会增加件,若店主想要每星期获利元,应把售价定为多少元?25.已知,如图,AB是⊙O的直径,点C为⊙O上一点,OF⊥BC于点F,交⊙O于点E,AE与BC交于点H,点D为OE的延长线上一点,且∠ODB=∠AEC.(1)求证:BD是⊙O的切线;(2)求证:CE2=EH•EA;(3)若⊙O的半径为,sinA=,求BH的长.26.如图1,在平面直角坐标系中,抛物线:经过点和点.(1)求抛物线的解析式;(2)如图2,作抛物线,使它与抛物线关于原点成中心对称,请直接写出抛物线的解析式;(3)如图3,将(2)中抛物线向上平移2个单位,得到抛物线,抛物线与抛物线相交于,两点(点在点的左侧).①求点和点的坐标;②若点,分别为抛物线和抛物线上,之间的动点(点,与点,不重合),试求四边形面积的最大值.《湖南省衡阳市蒸湘区呆鹰岭中学、蒸湘中学、雨母山中学联考2024-2025学年九年级下学期3月月考数学试题》参考答案1.D解:∵在实数范围内有意义,∴,∴,故选:D.2.CA选项中,,故方程无实数根;B选项中,,故方程无实数根;C选项中,,故方程有两个不相等的实数根;D选项中,,故方程无实数根;故选C.3.A根据二次根式的运算法则分别判断即可:A、和不是同类根式,不可合并,故此选项运算错误,符合题意;B、,故此选项运算正确,不合题意;C、,故此选项运算故此选项运算正确,不合题意;D、,故此选项运算正确,不合题意.故选A.4.C解:∵,,∴,在中,,由勾股定理可得:,故选:C.5.B解:∵PA,PB是的切线,∴,,,则,故选B.6.D解:∵点分别为边的中点,∴,,故正确;∵,∴,故正确;∵,∴,∴,故错误;故选:.7.A解:“任意画一个三角形,其内角和为”是必然事件,表述正确,故A符合题意;调查全国中学生的视力情况,适合采用抽样调查的方式,故B不符合题意;抽样调查的样本容量越小,对总体的估计就越不准确,故C不符合题意;十字路口的交通信号灯有红、黄、绿三种颜色,所以开车经过十字路口时,恰好遇到黄灯的概率不是,与三种灯的闪烁时间相关,故D不符合题意;故选A8.D解:对于y=(x-1)2+5,∵a=1>0,故抛物线开口向上,故A错误;顶点坐标为(1,5),故B错误;该函数有最小值,最小值是5,故C错误;当时,y随x的增大而增大,故D正确,故选:D.9.B解:过点作,如图在中,,,∴,在中,,,∴,∴;故选B.10.D解:如图,过作交于,四边形是矩形,,,,于点,,,,故①正确;,,,,,,故②正确,,,四边形是平行四边形,,,,于点,,,,故③正确;,,,,又,故④正确;故选:D.11.4解:;故答案为:4.12./0.4【分析】先确定无理数的个数,再除以总个数.【详解】解:,是无理数,(恰好是无理数).故答案为:.13.4根据题意得x1+x2=−=−=4故答案为414.6解:设甲的影长是x米,∵BC⊥AC,ED⊥AC,∴△ADE∽△ACB,∴,∵CD=1m,BC=1.8m,DE=1.5m,∴,解得:x=6.所以甲的影长是6米.故答案是6.考点:相似三角形的应用.15.解:在Rt△ABC中,∠C=90°,∵sinA==,∴cosB==.故答案为:.16.31解:由圆周角定理可知:故答案为:31.17.解:这个圆锥的侧面展开图中的长为.故答案为:.18.解:如图所示:
当y=0时,﹣x2+4x+5=0,解得x1=﹣1,x2=5,则A(﹣1,0),B(5,0),将该二次函数在x轴上方的图象沿x轴翻折到x轴下方的部分图象的解析式为,即y=x2﹣4x﹣5(﹣1≤x≤5),当直线y=﹣x+b经过点A(﹣1,0)时,1+b=0,解得b=﹣1;当直线y=﹣x+b与抛物线y=x2﹣4x﹣5(﹣1≤x≤5)有唯一公共点时,方程,即有相等的实数解,即解得,所以当直线y=﹣x+b与新图象有4个交点时,b的取值范围为<b<﹣1,故答案为:.19.1解:.20.(1)见解析(2),,(1)解:∵以原点为位似中心,在轴的右侧将放大为原来的两倍得到′,∴,,;如图,即为所作图形(2)解:由(1)得:,,.21.(1)见解析(2)(1)证明:∵是斜边上的高.∴,∴,∴又∵∴,(2)∵∴,又∴.22.(1)①200;②见解析;③54(2)1120(3)(1)解:(1)①;②组人数,补全的条形统计图如图所示:③;(2)解:;(3)解:画树状图如下:从甲、乙、丙、四位学生中随机抽取两人共有12种等可能性的结果,恰好抽中甲、乙两人的所有等可能性结果有2种,因此,(恰好抽中甲、乙两人).23.(1)教学楼的高度为米(2)无人机刚好离开视线的时间为12秒(1)解:过点B作于点G,根据题意可得:,米,,∵,,,∴四边形为矩形,∴米,∵,,∴,∴,∴米,∵长为米,∴(米),答:教学楼的高度为米.(2)解:连接并延长,交于点H,∵米,米,∴米,∵米,,∴,∴,米,∴(米),∵无人机以米/秒的速度飞行,∴离开视线的时间为:(秒),答:无人机刚好离开视线的时间为12秒.
4.应把售价定为185元或175元.解:设每次降价的百分率为,解得,,(舍去),即每次降价的百分率是;设店主将售价降价元,解得,,∴,,即应把售价定为元或元.25.(1)证明见解析;(2)见解析;(3)(1)如图,∵∠ODB=∠AEC,∠AEC=∠ABC,∴∠ODB=∠ABC,∵OF⊥BC,∴∠BFD=90°,∴∠ODB+∠DBF=90°,∴∠ABC+∠DBF=90°,即∠OBD=90°,∴BD⊥OB,∴BD是⊙O的切线;(2)连接AC,如图2所示:∵OF⊥BC,∴,∴∠CAE=∠ECB,∵∠CEA=∠HEC,∴△CEH∽△AEC,∴,∴CE2=EH•EA;(3)连接BE,如图3所示:∵AB是⊙O的直径,∴∠AEB=90°,∵⊙O的半径为,sin∠BAE=,∴AB=5,BE=AB•sin∠BAE=5×=3,∴EA==4,∵,∴BE=C
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年四川阆中市国有企业公开引进人才备考题库及1套参考答案详解
- 2026年孟定海关综合技术中心医学检验工作人员招聘备考题库完整答案详解
- 2026年信阳建投投资集团有限责任公司人力资源部经理招聘备考题库及一套完整答案详解
- 2026年山东大学土建与水利学院非事业编制工作人员招聘备考题库参考答案详解
- 2026年中船黄冈贵金属有限公司招聘备考题库及完整答案详解一套
- 2026年中国中医科学院望京医院公开招聘国内应届高校毕业生(提前批)备考题库及一套答案详解
- 2026年上海中远海运物流供应链有限公司招聘备考题库及完整答案详解一套
- 2026年南海区桂城街道中心小学招聘备考题库及完整答案详解一套
- 2026年北京市上地实验学校招聘备考题库及一套答案详解
- 2026年东山街公开招聘辅助人员备考题库及1套完整答案详解
- 七年级数学工程问题单元试卷及答案
- 药物不良事件课件
- 八年级语文上册期末考点专题01 汉字书写与书法鉴赏(原卷版)
- 儿科专科建设与发展规划指南
- 煤矿基本知识培训课件
- GB/T 9754-2025色漆和清漆20°、60°和85°光泽的测定
- 运输合同转包协议书范本
- 碳排放监测与控制技术-洞察阐释
- 回顾性研究设计及写作要点
- 中药储存养护管理制度
- T/CECS 10128-2021不锈钢二次供水水箱
评论
0/150
提交评论