




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
内蒙古阿荣旗第一中学2025年高三1月阶段性测试数学试题理试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知,则的大小关系为A. B. C. D.2.已知复数(为虚数单位,),则在复平面内对应的点所在的象限为()A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知函数(其中为自然对数的底数)有两个零点,则实数的取值范围是()A. B.C. D.4.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的的值为,则输入的的值为()A. B. C. D.5.某四棱锥的三视图如图所示,记S为此棱锥所有棱的长度的集合,则()A.B.C.D.6.若函数的图象向右平移个单位长度得到函数的图象,若函数在区间上单调递增,则的最大值为().A. B. C. D.7.已知集合,,若,则的最小值为()A.1 B.2 C.3 D.48.如图,平面四边形中,,,,,现将沿翻折,使点移动至点,且,则三棱锥的外接球的表面积为()A. B. C. D.9.函数的单调递增区间是()A. B. C. D.10.要得到函数的图象,只需将函数图象上所有点的横坐标()A.伸长到原来的2倍(纵坐标不变),再将得到的图象向右平移个单位长度B.伸长到原来的2倍(纵坐标不变),再将得到的图像向左平移个单位长度C.缩短到原来的倍(纵坐标不变),再将得到的图象向左平移个单位长度D.缩短到原来的倍(纵坐标不变),再将得到的图象向右平移个单位长度11.执行如下的程序框图,则输出的是()A. B.C. D.12.已知双曲线的离心率为,抛物线的焦点坐标为,若,则双曲线的渐近线方程为()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.展开式中的系数为________.14.已知不等式的解集不是空集,则实数的取值范围是;若不等式对任意实数恒成立,则实数的取值范围是___15.如图,在梯形中,∥,分别是的中点,若,则的值为___________.16.的展开式中的常数项为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,若的解集为.(1)求的值;(2)若正实数,,满足,求证:.18.(12分)已知椭圆C:(a>b>0)过点(0,),且满足a+b=3.(1)求椭圆C的方程;(2)若斜率为的直线与椭圆C交于两个不同点A,B,点M坐标为(2,1),设直线MA与MB的斜率分别为k1,k2,试问k1+k2是否为定值?并说明理由.19.(12分)在直角坐标系中,直线的参数方程为(为参数),以为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求的普通方程和的直角坐标方程;(2)把曲线向下平移个单位,然后各点横坐标变为原来的倍得到曲线(纵坐标不变),设点是曲线上的一个动点,求它到直线的距离的最小值.20.(12分)已知函数.(1)解不等式;(2)若函数存在零点,求的求值范围.21.(12分)已知圆O经过椭圆C:的两个焦点以及两个顶点,且点在椭圆C上.求椭圆C的方程;若直线l与圆O相切,与椭圆C交于M、N两点,且,求直线l的倾斜角.22.(10分)已知函数.(1)当时,解不等式;(2)当时,不等式恒成立,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解析】
分析:由题意结合对数的性质,对数函数的单调性和指数的性质整理计算即可确定a,b,c的大小关系.详解:由题意可知:,即,,即,,即,综上可得:.本题选择D选项.点睛:对于指数幂的大小的比较,我们通常都是运用指数函数的单调性,但很多时候,因幂的底数或指数不相同,不能直接利用函数的单调性进行比较.这就必须掌握一些特殊方法.在进行指数幂的大小比较时,若底数不同,则首先考虑将其转化成同底数,然后再根据指数函数的单调性进行判断.对于不同底而同指数的指数幂的大小的比较,利用图象法求解,既快捷,又准确.2、B【解析】
分别比较复数的实部、虚部与0的大小关系,可判断出在复平面内对应的点所在的象限.【详解】因为时,所以,,所以复数在复平面内对应的点位于第二象限.故选:B.【点睛】本题考查复数的几何意义,考查学生的计算求解能力,属于基础题.3、B【解析】
求出导函数,确定函数的单调性,确定函数的最值,根据零点存在定理可确定参数范围.【详解】,当时,,单调递增,当时,,单调递减,∴在上只有一个极大值也是最大值,显然时,,时,,因此要使函数有两个零点,则,∴.故选:B.【点睛】本题考查函数的零点,考查用导数研究函数的最值,根据零点存在定理确定参数范围.4、C【解析】
根据程序框图依次计算得到答案.【详解】,;,;,;,;,此时不满足,跳出循环,输出结果为,由题意,得.故选:【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力.5、D【解析】
如图所示:在边长为的正方体中,四棱锥满足条件,故,得到答案.【详解】如图所示:在边长为的正方体中,四棱锥满足条件.故,,.故,故,.故选:.【点睛】本题考查了三视图,元素和集合的关系,意在考查学生的空间想象能力和计算能力.6、C【解析】
由题意利用函数的图象变换规律,正弦函数的单调性,求出的最大值.【详解】解:把函数的图象向右平移个单位长度得到函数的图象,若函数在区间,上单调递增,在区间,上,,,则当最大时,,求得,故选:C.【点睛】本题主要考查函数的图象变换规律,正弦函数的单调性,属于基础题.7、B【解析】
解出,分别代入选项中的值进行验证.【详解】解:,.当时,,此时不成立.当时,,此时成立,符合题意.故选:B.【点睛】本题考查了不等式的解法,考查了集合的关系.8、C【解析】
由题意可得面,可知,因为,则面,于是.由此推出三棱锥外接球球心是的中点,进而算出,外接球半径为1,得出结果.【详解】解:由,翻折后得到,又,则面,可知.又因为,则面,于是,因此三棱锥外接球球心是的中点.计算可知,则外接球半径为1,从而外接球表面积为.故选:C.【点睛】本题主要考查简单的几何体、球的表面积等基础知识;考查空间想象能力、推理论证能力、运算求解能力及创新意识,属于中档题.9、D【解析】
利用辅助角公式,化简函数的解析式,再根据正弦函数的单调性,并采用整体法,可得结果.【详解】因为,由,解得,即函数的增区间为,所以当时,增区间的一个子集为.故选D.【点睛】本题考查了辅助角公式,考查正弦型函数的单调递增区间,重点在于把握正弦函数的单调性,同时对于整体法的应用,使问题化繁为简,难度较易.10、B【解析】
分析:根据三角函数的图象关系进行判断即可.详解:将函数图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),
得到再将得到的图象向左平移个单位长度得到故选B.点睛:本题主要考查三角函数的图象变换,结合和的关系是解决本题的关键.11、A【解析】
列出每一步算法循环,可得出输出结果的值.【详解】满足,执行第一次循环,,;成立,执行第二次循环,,;成立,执行第三次循环,,;成立,执行第四次循环,,;成立,执行第五次循环,,;成立,执行第六次循环,,;成立,执行第七次循环,,;成立,执行第八次循环,,;不成立,跳出循环体,输出的值为,故选:A.【点睛】本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.12、A【解析】
求出抛物线的焦点坐标,得到双曲线的离心率,然后求解a,b关系,即可得到双曲线的渐近线方程.【详解】抛物线y2=2px(p>0)的焦点坐标为(1,0),则p=2,又e=p,所以e2,可得c2=4a2=a2+b2,可得:ba,所以双曲线的渐近线方程为:y=±.故选:A.【点睛】本题考查双曲线的离心率以及双曲线渐近线方程的求法,涉及抛物线的简单性质的应用.二、填空题:本题共4小题,每小题5分,共20分。13、30【解析】
先将问题转化为二项式的系数问题,利用二项展开式的通项公式求出展开式的第项,令的指数分别等于2,4,求出特定项的系数.【详解】由题可得:展开式中的系数等于二项式展开式中的指数为2和4时的系数之和,由于二项式的通项公式为,令,得展开式的的系数为,令,得展开式的的系数为,所以展开式中的系数,故答案为30.【点睛】本题考查利用二项式展开式的通项公式解决二项展开式的特定项的问题,考查学生的转化能力,属于基础题.14、【解析】
利用绝对值的几何意义,确定出的最小值,然后根据题意即可得到的取值范围化简不等式,求出的最大值,然后求出结果【详解】的最小值为,则要使不等式的解集不是空集,则有化简不等式有,即而当时满足题意,解得或所以答案为【点睛】本题主要考查的是函数恒成立的问题和绝对值不等式,要注意到绝对值的几何意义,数形结合来解答本题,注意去绝对值时的分类讨论化简15、【解析】
建系,设设,由可得,进一步得到的坐标,再利用数量积的坐标运算即可得到答案.【详解】以A为坐标原点,AD为x轴建立如图所示的直角坐标系,设,则,所以,,由,得,即,又,所以,故,,所以.故答案为:2【点睛】本题考查利用坐标法求向量的数量积,考查学生的运算求解能力,是一道中档题.16、【解析】
写出展开式的通项公式,考虑当的指数为零时,对应的值即为常数项.【详解】的展开式通项公式为:,令,所以,所以常数项为.
故答案为:.【点睛】本题考查二项展开式中指定项系数的求解,难度较易.解答问题的关键是,能通过展开式通项公式分析常数项对应的取值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见详解.【解析】
(1)将不等式的解集用表示出来,结合题中的解集,求出的值;(2)利用柯西不等式证明.【详解】解:(1),,,因为的解集为,所以,;(2)由(1)由柯西不等式,当且仅当,,,等号成立.【点睛】本题考查了绝对值不等式的解法,利用柯西不等式证明不等式的问题,属于中档题.18、(1)(2)k1+k2为定值0,见解析【解析】
(1)利用已知条件直接求解,得到椭圆的方程;(2)设直线在轴上的截距为,推出直线方程,然后将直线与椭圆联立,设,利用韦达定理求出,然后化简求解即可.【详解】(1)由椭圆过点(0,),则,又a+b=3,所以,故椭圆的方程为;(2),证明如下:设直线在轴上的截距为,所以直线的方程为:,由得:,由得,设,则,所以,又,所以,故.【点睛】本题主要考查了椭圆的标准方程的求解,直线与椭圆的位置关系的综合应用,考查了方程的思想,转化与化归的思想,考查了学生的运算求解能力.19、(1),;(2).【解析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以得,进而可化简得出曲线的直角坐标方程;(2)根据变换得出的普通方程为,可设点的坐标为,利用点到直线的距离公式结合正弦函数的有界性可得出结果.【详解】(1)由(为参数),得,化简得,故直线的普通方程为.由,得,又,,.所以的直角坐标方程为;(2)由(1)得曲线的直角坐标方程为,向下平移个单位得到,纵坐标不变,横坐标变为原来的倍得到曲线的方程为,所以曲线的参数方程为(为参数).故点到直线的距离为,当时,最小为.【点睛】本题考查曲线的参数方程、极坐标方程与普通方程的相互转化,同时也考查了利用椭圆的参数方程解决点到直线的距离最值的求解,考查计算能力,属于中等题.20、(1)或;(2).【解析】
(1)通过讨论的范围,将绝对值符号去掉,转化为求不等式组的解集,之后取并集,得到原不等式的解集;(2)将函数零点问题转化为曲线交点问题解决,数形结合得到结果.【详解】(1)有题不等式可化为,当时,原不等式可化为,解得;当时,原不等式可化为,解得,不满足,舍去;当时,原不等式可化为,解得,所以不等式的解集为.(2)因为,所以若函数存在零点则可转化为函数与的图像存在交点,函数在上单调增,在上单调递减,且.数形结合可知.【点睛】该题考查的是有关不等式的问题,涉及到的知识点有分类讨论求绝对值不等式的解集,将零点问题转化为曲线交点的问题来解决,数形结合思想的应用,属于简单题目.21、(1);(2)或【解析】
(1)先由题意得出,可得出与的等量关系,然后将点的坐标代入椭圆的方程,可求出与的值,从而得出椭圆的方程;(2)对直线的斜率是否存在进行分类讨论,当直线的斜率不存在时,可求出,然后进行检验;当直线的斜率存在时,可设直线的方程为,设点,先由直线与圆相切得出与之间的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- DB32/T 4235-2022长春鳊人工繁殖技术规程
- DB32/T 4203-2022镜片减反射膜层耐久性能测试规范
- DB32/T 4178-2021河流水生态监测规范
- DB32/T 3762.4-2020新型冠状病毒检测技术规范第4部分:重组酶介导等温扩增程序
- DB32/T 3624-2019种鸡场鸡白痢净化技术规程
- DB32/T 3621-2019肉鸽生产性能测定技术规范
- DB31/T 899-2015涉及人的生物医学研究伦理审查规范
- DB31/T 784-2014快硬性道路基层混合料(FRRM)应用技术规范
- DB31/T 668.4-2012节能技术改造及合同能源管理项目节能量审核与计算方法第4部分:锅炉系统
- DB31/T 668.16-2020节能技术改造及合同能源管理项目节能量审核与计算方法第16部分:烟道式余热回收
- GB/T 3277-1991花纹钢板
- 新编简明英语语言学教程 第二版 戴炜栋10 Language Acquisition课件
- 部编版六年级语文下册《送元二使安西》课件
- 玻璃钢化粪池施工方案
- msp430f6638实验指导书教学开发系统
- 桥梁行洪论证的计算与注意要点
- 讲师个人简介
- 毛坯交付标准提示方案
- 现代写作教程全套课件
- 工程造价毕业设计
- 自喷漆(环氧乙烷)化学品安全技术说明书(MSDS)
评论
0/150
提交评论