版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河南省安阳市第三十五中学2025年高三下学期第四次质量检测试题数学试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.某工厂只生产口罩、抽纸和棉签,如图是该工厂年至年各产量的百分比堆积图(例如:年该工厂口罩、抽纸、棉签产量分别占、、),根据该图,以下结论一定正确的是()A.年该工厂的棉签产量最少B.这三年中每年抽纸的产量相差不明显C.三年累计下来产量最多的是口罩D.口罩的产量逐年增加2.已知复数满足,则的共轭复数是()A. B. C. D.3.设函数是奇函数的导函数,当时,,则使得成立的的取值范围是()A. B.C. D.4.某三棱锥的三视图如图所示,那么该三棱锥的表面中直角三角形的个数为()A.1 B.2 C.3 D.05.已知直四棱柱的所有棱长相等,,则直线与平面所成角的正切值等于()A. B. C. D.6.如图,在中,,是上的一点,若,则实数的值为()A. B. C. D.7.若数列满足且,则使的的值为()A. B. C. D.8.已知整数满足,记点的坐标为,则点满足的概率为()A. B. C. D.9.执行如图所示的程序框图,则输出的的值为()A. B.C. D.10.已知函数f(x)=sin2x+sin2(x),则f(x)的最小值为()A. B. C. D.11.已知向量,,则向量在向量上的投影是()A. B. C. D.12.五名志愿者到三个不同的单位去进行帮扶,每个单位至少一人,则甲、乙两人不在同一个单位的概率为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,(其中e为自然对数的底数),若关于x的方程恰有5个相异的实根,则实数a的取值范围为________.14.若变量,满足约束条件,则的最大值为__________.15.已知等比数列{an}的前n项和为Sn,若a216.甲,乙两队参加关于“一带一路”知识竞赛,甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,若两队各出一名队员进行比赛,则出场的两名运动员编号相同的概率为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在平面直角坐标系xoy中,曲线C的方程为.以原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程为.(1)写出曲线C的极坐标方程,并求出直线l与曲线C的交点M,N的极坐标;(2)设P是椭圆上的动点,求面积的最大值.18.(12分)已知圆的极坐标方程是,以极点为平面直角坐标系的原点,极轴为轴的正半轴,建立平面直角坐标系,直线的参数方程是是参数),若直线与圆相切,求实数的值.19.(12分)在平面直角坐标系中,曲线的参数方程是(为参数),以原点为极点,轴正半轴为极轴,建立极坐标系,直线的极坐标方程为.(Ⅰ)求曲线的普通方程与直线的直角坐标方程;(Ⅱ)已知直线与曲线交于,两点,与轴交于点,求.20.(12分)手工艺是一种生活态度和对传统的坚持,在我国有很多手工艺品制作村落,村民的手工技艺世代相传,有些村落制造出的手工艺品不仅全国闻名,还大量远销海外.近年来某手工艺品村制作的手工艺品在国外备受欢迎,该村村民成立了手工艺品外销合作社,为严把质量关,合作社对村民制作的每件手工艺品都请3位行家进行质量把关,质量把关程序如下:(i)若一件手工艺品3位行家都认为质量过关,则该手工艺品质量为A级;(ii)若仅有1位行家认为质量不过关,再由另外2位行家进行第二次质量把关,若第二次质量把关这2位行家都认为质量过关,则该手工艺品质量为B级,若第二次质量把关这2位行家中有1位或2位认为质量不过关,则该手工艺品质量为C级;(iii)若有2位或3位行家认为质量不过关,则该手工艺品质量为D级.已知每一次质量把关中一件手工艺品被1位行家认为质量不过关的概率为,且各手工艺品质量是否过关相互独立.(1)求一件手工艺品质量为B级的概率;(2)若一件手工艺品质量为A,B,C级均可外销,且利润分别为900元,600元,300元,质量为D级不能外销,利润记为100元.①求10件手工艺品中不能外销的手工艺品最有可能是多少件;②记1件手工艺品的利润为X元,求X的分布列与期望.21.(12分)已知数列的各项均为正数,且满足.(1)求,及的通项公式;(2)求数列的前项和.22.(10分)在创建“全国文明卫生城”过程中,运城市“创城办”为了调查市民对创城工作的了解情况,进行了一次创城知识问卷调查(一位市民只能参加一次),通过随机抽样,得到参加问卷调查的人的得分统计结果如表所示:.组别频数(1)由频数分布表可以大致认为,此次问卷调查的得分似为这人得分的平均值(同一组中的数据用该组区间的中点值作代表),利用该正态分布,求;(2)在(1)的条件下,“创城办”为此次参加问卷调查的市民制定如下奖励方案:①得分不低于的可以获赠次随机话费,得分低于的可以获赠次随机话费;②每次获赠的随机话费和对应的概率为:赠送话费的金额(单位:元)概率现有市民甲参加此次问卷调查,记(单位:元)为该市民参加问卷调查获赠的话费,求的分布列与数学期望.附:参考数据与公式:,若,则,,
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解析】
根据该厂每年产量未知可判断A、B、D选项的正误,根据每年口罩在该厂的产量中所占的比重最大可判断C选项的正误.综合可得出结论.【详解】由于该工厂年至年的产量未知,所以,从年至年棉签产量、抽纸产量以及口罩产量的变化无法比较,故A、B、D选项错误;由堆积图可知,从年至年,该工厂生产的口罩占该工厂的总产量的比重是最大的,则三年累计下来产量最多的是口罩,C选项正确.故选:C.【点睛】本题考查堆积图的应用,考查数据处理能力,属于基础题.2、B【解析】
根据复数的除法运算法则和共轭复数的定义直接求解即可.【详解】由,得,所以.故选:B【点睛】本题考查了复数的除法的运算法则,考查了复数的共轭复数的定义,属于基础题.3、D【解析】构造函数,令,则,由可得,则是区间上的单调递减函数,且,当x∈(0,1)时,g(x)>0,∵lnx<0,f(x)<0,(x2-1)f(x)>0;当x∈(1,+∞)时,g(x)<0,∵lnx>0,∴f(x)<0,(x2-1)f(x)<0∵f(x)是奇函数,当x∈(-1,0)时,f(x)>0,(x2-1)f(x)<0∴当x∈(-∞,-1)时,f(x)>0,(x2-1)f(x)>0.综上所述,使得(x2-1)f(x)>0成立的x的取值范围是.本题选择D选项.点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中.某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用.因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这是非常必要的.根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧.许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效.4、C【解析】
由三视图还原原几何体,借助于正方体可得三棱锥的表面中直角三角形的个数.【详解】由三视图还原原几何体如图,其中,,为直角三角形.∴该三棱锥的表面中直角三角形的个数为3.故选:C.【点睛】本小题主要考查由三视图还原为原图,属于基础题.5、D【解析】
以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.求解平面的法向量,利用线面角的向量公式即得解.【详解】如图所示的直四棱柱,,取中点,以为坐标原点,所在直线为x轴,所在直线为轴,所在直线为轴,建立空间直角坐标系.设,则,.设平面的法向量为,则取,得.设直线与平面所成角为,则,,∴直线与平面所成角的正切值等于故选:D【点睛】本题考查了向量法求解线面角,考查了学生空间想象,逻辑推理,数学运算的能力,属于中档题.6、B【解析】
变形为,由得,转化在中,利用三点共线可得.【详解】解:依题:,又三点共线,,解得.故选:.【点睛】本题考查平面向量基本定理及用向量共线定理求参数.思路是(1)先选择一组基底,并运用该基底将条件和结论表示成向量的形式,再通过向量的运算来解决.利用向量共线定理及向量相等的条件列方程(组)求参数的值.(2)直线的向量式参数方程:三点共线⇔(为平面内任一点,)7、C【解析】因为,所以是等差数列,且公差,则,所以由题设可得,则,应选答案C.8、D【解析】
列出所有圆内的整数点共有37个,满足条件的有7个,相除得到概率.【详解】因为是整数,所以所有满足条件的点是位于圆(含边界)内的整数点,满足条件的整数点有共37个,满足的整数点有7个,则所求概率为.故选:.【点睛】本题考查了古典概率的计算,意在考查学生的应用能力.9、B【解析】
列出循环的每一步,进而可求得输出的值.【详解】根据程序框图,执行循环前:,,,执行第一次循环时:,,所以:不成立.继续进行循环,…,当,时,成立,,由于不成立,执行下一次循环,,,成立,,成立,输出的的值为.故选:B.【点睛】本题考查的知识要点:程序框图的循环结构和条件结构的应用,主要考查学生的运算能力和转换能力,属于基础题型.10、A【解析】
先通过降幂公式和辅助角法将函数转化为,再求最值.【详解】已知函数f(x)=sin2x+sin2(x),=,=,因为,所以f(x)的最小值为.故选:A【点睛】本题主要考查倍角公式及两角和与差的三角函数的逆用,还考查了运算求解的能力,属于中档题.11、A【解析】
先利用向量坐标运算求解,再利用向量在向量上的投影公式即得解【详解】由于向量,故向量在向量上的投影是.故选:A【点睛】本题考查了向量加法、减法的坐标运算和向量投影的概念,考查了学生概念理解,数学运算的能力,属于中档题.12、D【解析】
三个单位的人数可能为2,2,1或3,1,1,求出甲、乙两人在同一个单位的概率,利用互为对立事件的概率和为1即可解决.【详解】由题意,三个单位的人数可能为2,2,1或3,1,1;基本事件总数有种,若为第一种情况,且甲、乙两人在同一个单位,共有种情况;若为第二种情况,且甲、乙两人在同一个单位,共有种,故甲、乙两人在同一个单位的概率为,故甲、乙两人不在同一个单位的概率为.故选:D.【点睛】本题考查古典概型的概率公式的计算,涉及到排列与组合的应用,在正面情况较多时,可以先求其对立事件,即甲、乙两人在同一个单位的概率,本题有一定难度.二、填空题:本题共4小题,每小题5分,共20分。13、【解析】
作出图象,求出方程的根,分类讨论的正负,数形结合即可.【详解】当时,令,解得,所以当时,,则单调递增,当时,,则单调递减,当时,单调递减,且,作出函数的图象如图:(1)当时,方程整理得,只有2个根,不满足条件;(2)若,则当时,方程整理得,则,,此时各有1解,故当时,方程整理得,有1解同时有2解,即需,,因为(2),故此时满足题意;或有2解同时有1解,则需,由(1)可知不成立;或有3解同时有0解,根据图象不存在此种情况,或有0解同时有3解,则,解得,故,(3)若,显然当时,和均无解,当时,和无解,不符合题意.综上:的范围是,故答案为:,【点睛】本题主要考查了函数零点与函数图象的关系,考查利用导数研究函数的单调性,意在考查学生对这些知识的理解掌握水平和分析推理能力,属于中档题.14、【解析】
根据约束条件可以画出可行域,从而将问题转化为直线在轴截距最大的问题的求解,通过数形结合的方式可确定过时,取最大值,代入可求得结果.【详解】由约束条件可得可行域如下图阴影部分所示:将化为,则最大时,直线在轴截距最大;由直线平移可知,当过时,在轴截距最大,由得:,.故答案为:.【点睛】本题考查线性规划中最值问题的求解,关键是能够将问题转化为直线在轴截距的最值的求解问题,通过数形结合的方式可求得结果.15、-2【解析】试题分析:∵a2考点:等比数列性质及求和公式16、【解析】
出场运动员编号相同的事件显然有3种,计算出总的基本事件数,由古典概型概率计算公式求得答案.【详解】甲队有编号为1,2,3的三名运动员,乙队有编号为1,2,3,4的四名运动员,出场的两名运动员编号相同的事件数为3,出现的基本事件总数,则出场的两名运动员编号相同的概率为.故答案为:【点睛】本题考查求古典概率的概率问题,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,;(2).【解析】
(1)利用公式即可求得曲线的极坐标方程;联立直线和曲线的极坐标方程,即可求得交点坐标;(2)设出点坐标的参数形式,将问题转化为求三角函数最值的问题即可求得.【详解】(1)曲线的极坐标方程:联立,得,又因为都满足两方程,故两曲线的交点为,.(2)易知,直线.设点,则点到直线的距离(其中).面积的最大值为.【点睛】本题考查极坐标方程和直角坐标方程之间的相互转化,涉及利用椭圆的参数方程求面积的最值问题,属综合中档题.18、【解析】
将圆的极坐标方程化为直角坐标方程,直线的参数方程化为普通方程,再根据直线与圆相切,利用圆心到直线的距离等于半径,即可求实数的值.【详解】由,得,,即圆的方程为,又由消,得,直线与圆相切,,.【点睛】本题重点考查方程的互化,考查直线与圆的位置关系,解题的关键是利用圆心到直线的距离等于半径,研究直线与圆相切.19、(1)(x-1)2+y2=4,直线l的直角坐标方程为x-y-2=0;(2)3.【解析】
(1)消参得到曲线的普通方程,利用极坐标和直角坐标方程的互化公式求得直线的直角坐标方程;(2)先得到直线的参数方程,将直线的参数方程代入到圆的方程,得到关于的一元二次方程,由根与系数的关系、参数的几何意义进行求解.【详解】(1)由曲线C的参数方程(α为参数)(α为参数),两式平方相加,得曲线C的普通方程为(x-1)2+y2=4;由直线l的极坐标方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直线l的直角坐标方程为x-y-2=0.(2)由题意可得P(2,0),则直线l的参数方程为(t为参数).设A,B两点对应的参数分别为t1,t2,则|PA|·|PB|=|t1|·|t2|,将(t为参数)代入(x-1)2+y2=4,得t2+t-3=0,则Δ>0,由韦达定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.20、(1);(2)①可能是2件;②详见解析【解析】
(1)由一件手工艺品质量为B级的情形,并结合相互独立事件的概率公式,列式计算即可;(2)①先求得一件手工艺品质量为D级的概率为,设10件手工艺品中不能外销的手工艺品可能是件,可知,分别令、、,可求出使得最大的整数,进而可求出10件手工艺品中不能外销的手工艺品的最有可能件数;②分别求出一件手工艺品质量为A、B、C、D级的概率,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2026年平顶山工业职业技术学院单招职业适应性考试备考题库及答案解析
- 2026年济宁职业技术学院单招职业适应性考试参考题库及答案解析
- 期中考试不及格检讨书(15篇)
- 2026年三门峡社会管理职业学院单招职业适应性测试参考题库及答案解析
- 2026年黑龙江司法警官职业学院单招职业适应性测试备考题库及答案解析
- 2026年山西青年职业学院单招职业适应性考试备考题库及答案解析
- 校园安全教育广播稿15篇
- 期末考试动员会发言稿(集锦15篇)
- 2026年阳光学院单招职业适应性测试模拟试题及答案解析
- 妇产科学护理实践与创新
- 2025年葫芦岛市总工会面向社会公开招聘工会社会工作者5人备考题库及参考答案详解
- 2025年南阳科技职业学院单招职业适应性考试模拟测试卷附答案
- 2026班级马年元旦主题联欢晚会 教学课件
- 2025年沈阳华晨专用车有限公司公开招聘备考笔试题库及答案解析
- 2025年云南省人民检察院聘用制书记员招聘(22人)笔试考试参考试题及答案解析
- 2025年乐山市商业银行社会招聘笔试题库及答案解析(夺冠系列)
- 高层建筑消防安全教育培训课件(香港大埔区宏福苑1126火灾事故警示教育)
- 见证取样手册(燃气工程分部)
- 2025新疆和田和康县、和安县面向社会招聘事业单位工作人员108人(公共基础知识)测试题附答案解析
- 暖通设备运行调试方案
- 综合管理部经理述职报告
评论
0/150
提交评论