版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2025届湖北省普通高中联考协作体高三第二次调研(3月二模)数学试题试卷注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知双曲线x2a2-y2b2=1(a>0,b>0),其右焦点F的坐标为(c,0),点A是第一象限内双曲线渐近线上的一点,O为坐标原点,满足|OA|=A.2 B.2 C.2332.将函数的图像向左平移个单位得到函数的图像,则的最小值为()A. B. C. D.3.已知平面和直线a,b,则下列命题正确的是()A.若∥,b∥,则∥ B.若,,则∥C.若∥,,则 D.若,b∥,则4.已知函数在上可导且恒成立,则下列不等式中一定成立的是()A.、B.、C.、D.、5.下列与函数定义域和单调性都相同的函数是()A. B. C. D.6.函数在上的大致图象是()A. B.C. D.7.的展开式中的系数是()A.160 B.240 C.280 D.3208.展开式中x2的系数为()A.-1280 B.4864 C.-4864 D.12809.已知变量的几组取值如下表:12347若与线性相关,且,则实数()A. B. C. D.10.某装饰公司制作一种扇形板状装饰品,其圆心角为120°,并在扇形弧上正面等距安装7个发彩色光的小灯泡且在背面用导线相连(弧的两端各一个,导线接头忽略不计),已知扇形的半径为30厘米,则连接导线最小大致需要的长度为()A.58厘米 B.63厘米 C.69厘米 D.76厘米11.甲乙两人有三个不同的学习小组,,可以参加,若每人必须参加并且仅能参加一个学习小组,则两人参加同一个小组的概率为()A.B.C.D.12.设集合,,则().A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数f(x)=x2﹣xlnx的图象在x=1处的切线方程为_____.14.已知抛物线的焦点为,斜率为2的直线与的交点为,若,则直线的方程为___________.15.设为互不相等的正实数,随机变量和的分布列如下表,若记,分别为的方差,则_____.(填>,<,=)16.已知复数,且满足(其中为虚数单位),则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知椭圆的焦距为2,且过点.(1)求椭圆的方程;(2)设为的左焦点,点为直线上任意一点,过点作的垂线交于两点,(ⅰ)证明:平分线段(其中为坐标原点);(ⅱ)当取最小值时,求点的坐标.18.(12分)的内角A,B,C的对边分别为a,b,c,已知,.求C;若,求,的面积19.(12分)已知数列满足:,,且对任意的都有,(Ⅰ)证明:对任意,都有;(Ⅱ)证明:对任意,都有;(Ⅲ)证明:.20.(12分)随着改革开放的不断深入,祖国不断富强,人民的生活水平逐步提高,为了进一步改善民生,2019年1月1日起我国实施了个人所得税的新政策,其政策的主要内容包括:(1)个税起征点为5000元;(2)每月应纳税所得额(含税)收入个税起征点专项附加扣除;(3)专项附加扣除包括①赡养老人费用②子女教育费用③继续教育费用④大病医疗费用等.其中前两项的扣除标准为:①赡养老人费用:每月扣除2000元②子女教育费用:每个子女每月扣除1000元.新个税政策的税率表部分内容如下:级数一级二级三级四级每月应纳税所得额(含税)不超过3000元的部分超过3000元至12000元的部分超过12000元至25000元的部分超过25000元至35000元的部分税率3102025(1)现有李某月收入29600元,膝下有一名子女,需要赡养老人,除此之外,无其它专项附加扣除.请问李某月应缴纳的个税金额为多少?(2)为研究月薪为20000元的群体的纳税情况,现收集了某城市500名的公司白领的相关资料,通过整理资料可知,有一个孩子的有400人,没有孩子的有100人,有一个孩子的人中有300人需要赡养老人,没有孩子的人中有50人需要赡养老人,并且他们均不符合其它专项附加扣除(受统计的500人中,任何两人均不在一个家庭).若他们的月收入均为20000元,依据样本估计总体的思想,试估计在新个税政策下这类人群缴纳个税金额的分布列与期望.21.(12分)数列满足,且.(1)证明:数列是等差数列,并求数列的通项公式;(2)求数列的前项和.22.(10分)已知曲线:和:(为参数).以原点为极点,轴的正半轴为极轴,建立极坐标系,且两种坐标系中取相同的长度单位.(1)求曲线的直角坐标方程和的方程化为极坐标方程;(2)设与,轴交于,两点,且线段的中点为.若射线与,交于,两点,求,两点间的距离.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.C【解析】
计算得到Ac,bca【详解】双曲线的一条渐近线方程为y=bax,A故Ac,bca,Fc,0,故Mc,故选:C.【点睛】本题考查了双曲线离心率,意在考查学生的计算能力和综合应用能力.2.B【解析】
根据三角函数的平移求出函数的解析式,结合三角函数的性质进行求解即可.【详解】将函数的图象向左平移个单位,得到,此时与函数的图象重合,则,即,,当时,取得最小值为,故选:.【点睛】本题主要考查三角函数的图象和性质,利用三角函数的平移关系求出解析式是解决本题的关键.3.C【解析】
根据线面的位置关系,结合线面平行的判定定理、平行线的性质进行判断即可.【详解】A:当时,也可以满足∥,b∥,故本命题不正确;B:当时,也可以满足,,故本命题不正确;C:根据平行线的性质可知:当∥,,时,能得到,故本命题是正确的;D:当时,也可以满足,b∥,故本命题不正确.故选:C【点睛】本题考查了线面的位置关系,考查了平行线的性质,考查了推理论证能力.4.A【解析】
设,利用导数和题设条件,得到,得出函数在R上单调递增,得到,进而变形即可求解.【详解】由题意,设,则,又由,所以,即函数在R上单调递增,则,即,变形可得.故选:A.【点睛】本题主要考查了利用导数研究函数的单调性及其应用,以及利用单调性比较大小,其中解答中根据题意合理构造新函数,利用新函数的单调性求解是解答的关键,着重考查了构造思想,以及推理与计算能力,属于中档试题.5.C【解析】
分析函数的定义域和单调性,然后对选项逐一分析函数的定义域、单调性,由此确定正确选项.【详解】函数的定义域为,在上为减函数.A选项,的定义域为,在上为增函数,不符合.B选项,的定义域为,不符合.C选项,的定义域为,在上为减函数,符合.D选项,的定义域为,不符合.故选:C【点睛】本小题主要考查函数的定义域和单调性,属于基础题.6.D【解析】
讨论的取值范围,然后对函数进行求导,利用导数的几何意义即可判断.【详解】当时,,则,所以函数在上单调递增,令,则,根据三角函数的性质,当时,,故切线的斜率变小,当时,,故切线的斜率变大,可排除A、B;当时,,则,所以函数在上单调递增,令,,当时,,故切线的斜率变大,当时,,故切线的斜率变小,可排除C,故选:D【点睛】本题考查了识别函数的图像,考查了导数与函数单调性的关系以及导数的几何意义,属于中档题.7.C【解析】
首先把看作为一个整体,进而利用二项展开式求得的系数,再求的展开式中的系数,二者相乘即可求解.【详解】由二项展开式的通项公式可得的第项为,令,则,又的第为,令,则,所以的系数是.故选:C【点睛】本题考查二项展开式指定项的系数,掌握二项展开式的通项是解题的关键,属于基础题.8.A【解析】
根据二项式展开式的公式得到具体为:化简求值即可.【详解】根据二项式的展开式得到可以第一个括号里出项,第二个括号里出项,或者第一个括号里出,第二个括号里出,具体为:化简得到-1280x2故得到答案为:A.【点睛】求二项展开式有关问题的常见类型及解题策略:(1)求展开式中的特定项.可依据条件写出第项,再由特定项的特点求出值即可.(2)已知展开式的某项,求特定项的系数.可由某项得出参数项,再由通项写出第项,由特定项得出值,最后求出其参数.9.B【解析】
求出,把坐标代入方程可求得.【详解】据题意,得,所以,所以.故选:B.【点睛】本题考查线性回归直线方程,由性质线性回归直线一定过中心点可计算参数值.10.B【解析】
由于实际问题中扇形弧长较小,可将导线的长视为扇形弧长,利用弧长公式计算即可.【详解】因为弧长比较短的情况下分成6等分,所以每部分的弦长和弧长相差很小,可以用弧长近似代替弦长,故导线长度约为63(厘米).故选:B.【点睛】本题主要考查了扇形弧长的计算,属于容易题.11.A【解析】依题意,基本事件的总数有种,两个人参加同一个小组,方法数有种,故概率为.12.D【解析】
根据题意,求出集合A,进而求出集合和,分析选项即可得到答案.【详解】根据题意,则故选:D【点睛】此题考查集合的交并集运算,属于简单题目,二、填空题:本题共4小题,每小题5分,共20分。13.x﹣y=0.【解析】
先将x=1代入函数式求出切点纵坐标,然后对函数求导数,进一步求出切线斜率,最后利用点斜式写出切线方程.【详解】由题意得.故切线方程为y﹣1=x﹣1,即x﹣y=0.故答案为:x﹣y=0.【点睛】本题考查利用导数求切线方程的基本方法,利用切点满足的条件列方程(组)是关键.同时也考查了学生的运算能力,属于基础题.14.【解析】
设直线l的方程为,,联立直线l与抛物线C的方程,得到A,B点横坐标的关系式,代入到中,解出t的值,即可求得直线l的方程【详解】设直线.由题设得,故,由题设可得.
由可得,
则,从而,得,所以l的方程为,故答案为:【点睛】本题主要考查了直线的方程,抛物线的定义,抛物线的简单几何性质,直线与抛物线的位置关系,属于中档题.15.>【解析】
根据方差计算公式,计算出的表达式,由此利用差比较法,比较出两者的大小关系.【详解】,故.,.要比较的大小,只需比较与,两者作差并化简得①,由于为互不相等的正实数,故,也即,也即.故答案为:【点睛】本小题主要考查随机变量期望和方差的计算,考查差比较法比较大小,考查运算求解能力,属于难题.16.【解析】
计算出,两个复数相等,实部与实部相等,虚部与虚部相等,列方程组求解.【详解】,所以,所以.故答案为:-8【点睛】此题考查复数的基本运算和概念辨析,需要熟练掌握复数的运算法则.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(1)(2)(ⅰ)见解析(ⅱ)点的坐标为.【解析】
(1)由题意得,再由的关系求出,即可得椭圆的标准方程;(2)(i)设,的中点为,,设直线的方程为,代入椭圆方程中,运用根与系数的关系和中点坐标公式,结合三点共线的方法:斜率相等,即可得证;(ii)利用两点间的距离公式及弦长公式将表示出来,由换元法的对勾函数的单调性,可得取最小值时的条件获得等量关系,从而确定点的坐标.【详解】解:(1)由题意得,,所以,所以椭圆方程为(2)设,的中点为,(ⅰ)证明:由,可设直线的方程为,代入椭圆方程,得,所以,所以,则直线的斜率为,因为,所以,所以三点共线,所以平分线段;(ii)由两点间的距离公式得由弦长公式得所以,令,则,由在上递增,可得,即时,取得最小值4,所以当取最小值时,点的坐标为【点睛】此题考那可是椭圆方程和性质,主要考查椭圆方程的运用,运用根与系数的关系和中点坐标公式,同时考查弦长公式,属于较难题.18.(1).(2).【解析】
由已知利用正弦定理,同角三角函数基本关系式可求,结合范围,可求,由已知利用二倍角的余弦函数公式可得,结合范围,可求A,根据三角形的内角和定理即可解得C的值.由及正弦定理可得b的值,根据两角和的正弦函数公式可求sinC的值,进而根据三角形的面积公式即可求解.【详解】由已知可得,又由正弦定理,可得,即,,,,即,又,,或舍去,可得,.,,,由正弦定理,可得,,.【点睛】本题主要考查了正弦定理,同角三角函数基本关系式,二倍角的余弦函数公式,三角形的内角和定理,两角和的正弦函数公式,三角形的面积公式等知识在解三角形中的应用,考查了计算能力和转化思想,属于中档题.19.(1)见解析(2)见解析(3)见解析【解析】分析:(1)用反证法证明,注意应用题中所给的条件,有效利用,再者就是注意应用反证法证题的步骤;(2)将式子进行相应的代换,结合不等式的性质证得结果;(3)结合题中的条件,应用反证法求得结果.详解:证明:(Ⅰ)证明:采用反证法,若不成立,则若,则,与任意的都有矛盾;若,则有,则与任意的都有矛盾;故对任意,都有成立;(Ⅱ)由得,则,由(Ⅰ)知,,即对任意,都有;.(Ⅲ)由(Ⅱ)得:,由(Ⅰ)知,,∴,∴,即,若,则,取时,有,与矛盾.则.得证.点睛:该题考查的是有关命题的证明问题,在证题的过程中,注意对题中的条件的等价转化,注意对式子的等价变形,以及证题的思路,要掌握证明问题的方法,尤其是反证法的证题思路以及证明步骤.20.(1)李某月应缴纳的个税金额为元,(2)分布列详见解析,期望为1150元【解析】
(1)分段计算个人所得税额;
(2)随机变量X的所有可能的取值为990,1190,1390,1590,分别求出各值对应的概率,列出分布列,求期望即可.【详解】解:(1)李某月应纳税所得额(含税)为:29600−5000−1000−2000=21600元
不超过3000的部分税额为3000×3%=90元
超过3000元至12000元的部分税额为9000×10%=900元,
超过12000元至25000元的部分税额为9600×20%=1920元
所以李某月应缴纳的个税金额为90+900+1920=2910元,
(2)有一个孩子需要赡养老人应纳税所得额(含税)为:20000−5000−1000−2000=12000元,
月应缴纳的个税金额为:90+900=990元
有一个孩子不需要赡养老人应纳税所得额(含税)为:20000−5000−1000=14000元,
月应缴纳的个税金额为:90+900+400=1390元;
没有孩子需要赡养老人应纳税所得额(含税)为:20000−5000−2000=13000元,
月应缴纳的个税金额为:90+900+200=1190元;
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 非正式社会网络中的田野调查研究-洞察及研究
- 低碳城市与绿色发展-洞察及研究
- 创新型透析装置的Thatto候克氏综合征治疗研究-洞察及研究
- 2025-2030中国股市行业股票回购行业市场深度调研及发展趋势与投资前景研究报告
- 2025-2030中国硅微粉硅铝酸钠项目市场供需环境保护调研及事故投资处理规划总析
- 绿色建筑的光伏应用研究-洞察及研究
- 2025-2030中国环保设备技术行业市场现状需求供给分析及投资评估规划分析研究报告
- 跨境支付解决方案-第1篇-洞察及研究
- 红宝石氧化物异质结构的微观结构分析-洞察及研究
- 2026年劳动合同变更协议
- 股东会清算协议书
- 2025大理州强制隔离戒毒所招聘辅警(5人)笔试考试备考题库及答案解析
- 2026年湖南工程职业技术学院单招职业倾向性测试题库及完整答案详解1套
- 2025年安全培训计划表
- 2026年榆林职业技术学院单招职业技能测试题库参考答案详解
- 2025年沈阳华晨专用车有限公司公开招聘笔试历年参考题库附带答案详解
- 第7课 月亮是从哪里来的 教学课件
- 2026(苏教版)数学五上期末复习大全(知识梳理+易错题+压轴题+模拟卷)
- 垃圾中转站机械设备日常维护操作指南
- 单证主管助理客户服务能力提升方案
- 汽车行业可信数据空间方案
评论
0/150
提交评论